Fifth annual conference of the SFB-TRR 195

Towards the Classification of Symplectic Linear Quotient Singularities Admitting a Symplectic Resolution

Johannes Schmitt TU Kaiserslautern 16th September 2021 Joint work with Gwyn Bellamy and Ulrich Thiel Math. Z. (2021), to appear

- 2. The Groups in Question
- 3. Symplectic Reflection Algebras
- 4. Conclusion

Let V be a finite dimensional \mathbb{C} -vector space.

Let V be a finite dimensional \mathbb{C} -vector space.

The space V is called symplectic if there is a bilinear form $\omega: V \times V \to \mathbb{C}$ which is non-degenerate and alternating, i.e. $\omega(v,v)=0$ for all $v \in V$.

Let V be a finite dimensional \mathbb{C} -vector space.

The space V is called symplectic if there is a bilinear form $\omega: V \times V \to \mathbb{C}$ which is non-degenerate and alternating, i.e. $\omega(v,v)=0$ for all $v \in V$.

For *V* symplectic define

$$\mathsf{Sp}(V) := \{ g \in \mathsf{GL}(V) \mid \omega(gv, gw) = \omega(v, w) \} \leq \mathsf{GL}(V) .$$

Let V be a finite dimensional \mathbb{C} -vector space.

The space V is called symplectic if there is a bilinear form $\omega: V \times V \to \mathbb{C}$ which is non-degenerate and alternating, i.e. $\omega(v,v)=0$ for all $v \in V$.

For V symplectic define

$$\mathsf{Sp}(V) := \{ g \in \mathsf{GL}(V) \mid \omega(gv, gw) = \omega(v, w) \} \leq \mathsf{GL}(V) \ .$$

Example

For
$$V = \mathbb{C}^{2n}$$
 and $\omega(v, w) := v^{\top} J_n w$ with $J_n := \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$, we have

$$\operatorname{\mathsf{Sp}}_{2n}(\mathbb{C}) = \{ g \in \operatorname{\mathsf{GL}}_{2n}(\mathbb{C}) \mid g^{\top} J_n g = J_n \} \ .$$

Let V be a finite dimensional \mathbb{C} -vector space.

The space V is called symplectic if there is a bilinear form $\omega: V \times V \to \mathbb{C}$ which is non-degenerate and alternating, i.e. $\omega(v,v)=0$ for all $v \in V$.

For *V* symplectic define

$$\mathsf{Sp}(V) := \{ g \in \mathsf{GL}(V) \mid \omega(gv, gw) = \omega(v, w) \} \leq \mathsf{GL}(V) .$$

Let V be a finite dimensional \mathbb{C} -vector space.

The space V is called symplectic if there is a bilinear form $\omega: V \times V \to \mathbb{C}$ which is non-degenerate and alternating, i.e. $\omega(v,v)=0$ for all $v \in V$.

For *V* symplectic define

$$\operatorname{\mathsf{Sp}}(V) := \{ g \in \operatorname{\mathsf{GL}}(V) \mid \omega(gv, gw) = \omega(v, w) \} \leq \operatorname{\mathsf{GL}}(V) \ .$$

Example

Let \mathfrak{h} be a vector space. Then $\mathfrak{h} \oplus \mathfrak{h}^*$ is symplectic via $\omega((v,f),(w,g)) = g(v) - f(w) \ .$

For $W \leq GL(\mathfrak{h})$ the induced action on $\mathfrak{h} \oplus \mathfrak{h}^*$ is symplectic.

Let V be a finite dimensional \mathbb{C} -vector space.

The space V is called symplectic if there is a bilinear form $\omega: V \times V \to \mathbb{C}$ which is non-degenerate and alternating, i.e. $\omega(v,v)=0$ for all $v \in V$.

For V symplectic define

$$\operatorname{\mathsf{Sp}}(V) := \{ g \in \operatorname{\mathsf{GL}}(V) \mid \omega(gv, gw) = \omega(v, w) \} \leq \operatorname{\mathsf{GL}}(V) \ .$$

Example

Let \mathfrak{h} be a vector space. Then $\mathfrak{h} \oplus \mathfrak{h}^*$ is symplectic via $\omega((v,f),(w,g)) = g(v) - f(w)$.

For $W \leq GL(\mathfrak{h})$ the induced action on $\mathfrak{h} \oplus \mathfrak{h}^*$ is symplectic.

Fact: $Sp(V) \leq SL(V)$.

Let $G \leq GL(V)$, $|G| < \infty$.

Let
$$G \leq GL(V)$$
, $|G| < \infty$.

Consider

$$V/G := \operatorname{\mathsf{Spec}}\nolimits \mathbb{C}[V]^G$$
 "=" space of orbits .

Let
$$G \leq GL(V)$$
, $|G| < \infty$.

Consider

$$V/G:=\operatorname{\mathsf{Spec}}\nolimits{\mathbb C}[V]^G$$
 "=" space of orbits .

$$\mathbf{C}_2$$

Let
$$\mathbf{C}_2 := \left\langle \left(\begin{smallmatrix} -1 & 0 \\ 0 & -1 \end{smallmatrix} \right) \right\rangle \leq \mathsf{Sp}_2(\mathbb{C})$$
. Then

$$\mathbb{C}[u,v,w]/\langle uv-w^2\rangle\cong\mathbb{C}[x,y]^{\mathbf{C}_2}$$
.

Let
$$G \leq GL(V)$$
, $|G| < \infty$.

Consider

$$V/G := \operatorname{Spec} \mathbb{C}[V]^G$$
 "=" space of orbits .

$$egin{aligned} \mathbf{C}_2 \ & \mathsf{Let} \ \mathbf{C}_2 := \left\langle \left(egin{array}{cc} ^{-1} & 0 \\ 0 & -1 \end{array} \right) \right
angle \leq \mathsf{Sp}_2(\mathbb{C}). \ \mathsf{Then} \ & \mathbb{C}[u,v,w]/\langle uv-w^2 \rangle \cong \mathbb{C}[x,y]^{\mathbf{C}_2} \ . \end{aligned}$$

Let $G \leq GL(V)$, $|G| < \infty$.

Consider

$$V/G:=\operatorname{\mathsf{Spec}}\nolimits{\mathbb C}[V]^G$$
 "=" space of orbits .

 \mathbf{C}_2

Let
$$\mathbf{C}_2:=\left\langle \left(egin{smallmatrix} -1 & 0 \\ 0 & -1 \end{smallmatrix} \right) \right\rangle \leq \mathsf{Sp}_2(\mathbb{C}).$$
 Then

$$\mathbb{C}[u,v,w]/\langle uv-w^2\rangle\cong\mathbb{C}[x,y]^{\mathbf{C}_2}$$
.

Classical fact

The variety V/G is smooth if and only if G is generated by reflections, i.e. $g \in GL(V)$ with rk(g-1)=1.

Let
$$G \leq GL(V)$$
, $|G| < \infty$.

Consider

$$V/G:=\operatorname{\mathsf{Spec}}\nolimits{\mathbb C}[V]^G$$
 "=" space of orbits .

 \mathbf{C}_2

Let
$$\mathbf{C}_2:=\left\langle \left(egin{smallmatrix} -1 & 0 \\ 0 & -1 \end{smallmatrix} \right) \right\rangle \leq \mathsf{Sp}_2(\mathbb{C}).$$
 Then

$$\mathbb{C}[u,v,w]/\langle uv-w^2\rangle\cong\mathbb{C}[x,y]^{\mathbf{C}_2}$$
.

The variety V/G is smooth if and only if G is generated by reflections, i.e. $g \in GL(V)$ with rk(g-1)=1.

Corollary

If V is symplectic and $G \leq \operatorname{Sp}(V)$, then V/G is singular.

Resolutions

A resolution of V/G is a smooth variety

X and a proper birational morphism

 $X \rightarrow V/G$.

Resolutions

A resolution of V/G is a smooth variety

 \boldsymbol{X} and a proper birational morphism

 $X \rightarrow V/G$.

Resolutions

A resolution of V/G is a smooth variety

X and a proper birational morphism

$$X \rightarrow V/G$$
.

If $G \leq \operatorname{Sp}(V)$, then V/G has a symplectic structure.

Resolutions

A resolution of V/G is a smooth variety X and a proper birational morphism $X \to V/G$.

If $G \leq \operatorname{Sp}(V)$, then V/G has a symplectic structure.

Symplectic resolutions (Beauville, 2000)

A symplectic resolution of V/G is a resolution $\varphi:X\to V/G$, where X is a symplectic variety and φ is an isomorphism of symplectic varieties over the smooth locus.

Resolutions

A resolution of V/G is a smooth variety X and a proper birational morphism $X \to V/G$.

If $G \leq \operatorname{Sp}(V)$, then V/G has a symplectic structure.

Symplectic resolutions (Beauville, 2000)

A symplectic resolution of V/G is a resolution $\varphi: X \to V/G$, where X is a symplectic variety and φ is an isomorphism of symplectic varieties over the smooth locus.

In general, those do not exist!

Classification problem

Classify all $G \leq \operatorname{Sp}(V)$ for which V/G admits a (projective) symplectic resolution.

Classification problem

Classify all $G \leq \operatorname{Sp}(V)$ for which V/G admits a (projective) symplectic resolution.

We only need to consider irreducible tuples (V, ω, G) .

Classification problem

Classify all $G \leq \operatorname{Sp}(V)$ for which V/G admits a (projective) symplectic resolution.

We only need to consider irreducible tuples (V, ω, G) .

 $\dim V = 2$

If $G \leq SL_2(\mathbb{C})$, then there is always a symplectic resolution.

 \rightarrow "Kleinian singularities"

Classification problem

Classify all $G \leq \operatorname{Sp}(V)$ for which V/G admits a (projective) symplectic resolution.

We only need to consider irreducible tuples (V, ω, G) .

 $\dim V = 2$

If $G \leq SL_2(\mathbb{C})$, then there is always a symplectic resolution. \rightarrow "Kleinian singularities"

Theorem (Verbitsky, 2000)

If V/G admits a symplectic resolution, then G is generated by symplectic reflections, i.e. $g \in G$ with $\mathrm{rk}(g-1)=2$.

Classification problem

Classify all $G \leq \operatorname{Sp}(V)$ for which V/G admits a (projective) symplectic resolution.

We only need to consider irreducible tuples (V, ω, G) .

 $\dim V = 2$

If $G \leq SL_2(\mathbb{C})$, then there is always a symplectic resolution. \to "Kleinian singularities"

Theorem (Verbitsky, 2000)

If V/G admits a symplectic resolution, then G is generated by symplectic reflections, i.e. $g \in G$ with $\mathrm{rk}(g-1)=2$.

Example

Let $W \leq GL(\mathfrak{h})$ be a complex reflection group. Then $W \leq Sp(\mathfrak{h} \oplus \mathfrak{h}^*)$ is a symplectic reflection group.

Classification by Cohen, 1980

Classification by Cohen, 1980

Classification by Cohen, 1980

Classification by Cohen, 1980

39

2. The Groups in Question

3. Symplectic Reflection Algebras

4. Conclusion

Symplectically Primitive, Complex Imprimitive Groups

We consider groups G which are

- symplectically primitive, so there is **no** non-trivial decomposition $V = V_1 \oplus \cdots \oplus V_k$ into symplectic subspaces such that for any $g \in G$ and any i there is j with $g(V_i) = V_j$;
- complex imprimitive, so there exists such a decomposition into (not necessarily symplectic) subspaces.

Symplectically Primitive, Complex Imprimitive Groups

We consider groups G which are

- symplectically primitive, so there is **no** non-trivial decomposition $V = V_1 \oplus \cdots \oplus V_k$ into symplectic subspaces such that for any $g \in G$ and any i there is j with $g(V_i) = V_j$;
- complex imprimitive, so there exists such a decomposition into (not necessarily symplectic) subspaces.

For these groups we have dim V=4 (Cohen, 1980), so we may assume $V=\mathbb{C}^4$.

Symplectically Primitive, Complex Imprimitive Groups

We consider groups G which are

- symplectically primitive, so there is **no** non-trivial decomposition $V = V_1 \oplus \cdots \oplus V_k$ into symplectic subspaces such that for any $g \in G$ and any i there is j with $g(V_i) = V_j$;
- complex imprimitive, so there exists such a decomposition into (not necessarily symplectic) subspaces.

For these groups we have dim V=4 (Cohen, 1980), so we may assume $V=\mathbb{C}^4$.

Four infinite families of groups $H \leq \operatorname{GL}_2(\mathbb{C})$, e.g. $\mu_{6d}\mathsf{T}$, $d \in \mathbb{Z}_{\geq 1}$, leading to $E(H) \leq \operatorname{Sp}_4(\mathbb{C})$ generated by

$$h^{\vee} := \begin{pmatrix} h & 0 \\ 0 & (h^{\top})^{-1} \end{pmatrix}$$
 for $h \in H$, and $s := \begin{pmatrix} & & 1 \\ 1 & & \end{pmatrix}$.

Subgroup Structures

Let $H_0 \leq H$ be the largest complex reflection subgroup.

Lemma

The group H_0 is primitive (e.g. G_5 for $H = \mu_6 T$) and H_0^{\vee} is a normal subgroup of E(H).

Subgroup Structures

Let $H_0 \leq H$ be the largest complex reflection subgroup.

Lemma

The group H_0 is primitive (e.g. G_5 for $H = \mu_6 T$) and H_0^{\vee} is a normal subgroup of E(H).

Lemma

Any E(H) contains a dihedral group D_d as normal subgroup.

Subgroup Structures

Let $H_0 \leq H$ be the largest complex reflection subgroup.

Lemma

The group H_0 is primitive (e.g. G_5 for $H = \mu_6 T$) and H_0^{\vee} is a normal subgroup of E(H).

Lemma

Any E(H) contains a dihedral group D_d as normal subgroup.

Write $S(G) \subseteq G$ for the subset of symplectic reflections.

Lemma

We have $S(E(H)) = S(H_0^{\vee}) \dot{\cup} S(D_d)$, stable under E(H)-conjugacy.

- 1. The Classification Problem
- 2. The Groups in Question

4. Conclusion

Deep link to representation theory: Consider deformations of $\mathbb{C}[V] \rtimes G$, called the symplectic reflection algebras $H_{\mathbf{c}}(V,G)$.

Deep link to representation theory: Consider deformations of $\mathbb{C}[V] \rtimes G$, called the symplectic reflection algebras $H_{\mathbf{c}}(V,G)$.

Technical detail

Here $\mathbf{c}:\mathcal{S}(\mathcal{G}) \to \mathbb{C}$ is a \mathcal{G} -conjugacy invariant function.

Deep link to representation theory: Consider deformations of $\mathbb{C}[V] \rtimes G$, called the symplectic reflection algebras $H_{\mathbf{c}}(V,G)$.

Technical detail

Here $\mathbf{c}:\mathcal{S}(G)\to\mathbb{C}$ is a G-conjugacy invariant function.

Etingof-Ginzburg, 2002; Ginzburg-Kaledin, 2004

If V/G admits a symplectic resolution, then there exists ${\bf c}$ such that dim S=|G| for all irreducible ${\sf H_c}(V,G)$ -modules S.

Deep link to representation theory: Consider deformations of $\mathbb{C}[V] \rtimes G$, called the symplectic reflection algebras $H_{\mathbf{c}}(V,G)$.

Technical detail

Here $\mathbf{c}: \mathcal{S}(G) \to \mathbb{C}$ is a *G*-conjugacy invariant function.

Etingof-Ginzburg, 2002; Ginzburg-Kaledin, 2004

If V/G admits a symplectic resolution, then there exists ${\bf c}$ such that dim S=|G| for all irreducible ${\sf H_c}(V,G)$ -modules S.

Strategy

Find for all \mathbf{c} an irreducible $H_{\mathbf{c}}(V,G)$ -module S with dim $S \neq |G|$.

Deep link to representation theory: Consider deformations of $\mathbb{C}[V] \rtimes G$, called the symplectic reflection algebras $H_{\mathbf{c}}(V,G)$.

Technical detail

Here $\mathbf{c}: \mathcal{S}(G) \to \mathbb{C}$ is a *G*-conjugacy invariant function.

Etingof-Ginzburg, 2002; Ginzburg-Kaledin, 2004

If V/G admits a symplectic resolution, then there exists ${\bf c}$ such that dim S=|G| for all irreducible ${\sf H_c}(V,G)$ -modules S.

Strategy

Find for all \mathbf{c} an irreducible $H_{\mathbf{c}}(V,G)$ -module S with dim $S \neq |G|$.

The same strategy was already used for the "improper" symplectic reflection groups.

Subalgebras

Recall the Lemma:

Lemma

We have $S(E(H)) = S(H_0^{\vee}) \dot{\cup} S(D_d)$, stable under E(H)-conjugacy.

Subalgebras

Recall the Lemma:

Lemma

We have $S(E(H)) = S(H_0^{\vee}) \dot{\cup} S(D_d)$, stable under E(H)-conjugacy.

That means we can "split up" c into two parameters

$$\mathbf{c}_1: \mathcal{S}(H_0^{ee}) o \mathbb{C}$$
 and $\mathbf{c}_2: \mathcal{S}(D_d) o \mathbb{C}$.

Subalgebras

Recall the Lemma:

Lemma

We have $S(E(H)) = S(H_0^{\vee}) \dot{\cup} S(D_d)$, stable under E(H)-conjugacy.

That means we can "split up" c into two parameters

$$\mathbf{c}_1: \mathcal{S}(H_0^{ee}) o \mathbb{C}$$
 and $\mathbf{c}_2: \mathcal{S}(D_d) o \mathbb{C}$.

This gives (sub)algebras

$$\mathsf{H}_{\mathbf{c}_1}(H_0^\vee)\subseteq \mathsf{H}_{\mathbf{c}_1}(H^\vee)\subseteq \mathsf{H}_{\mathbf{c}_1}(E(H)) \leftrightsquigarrow \mathsf{H}_{\mathbf{c}}(E(H)) \leftrightsquigarrow \mathsf{H}_{\mathbf{c}_2}(D_d)\;.$$

```
H_{\mathbf{c}_1}(H_0^{\vee})
H_{\mathbf{c}_1}(H^{\vee})
H_{\mathbf{c}_1}(E(H))
  H_{c}(E(H))
```

 $H_{\mathbf{c}_2}(D_d)$

Remember: We want to construct an $H_c(E(H))$ -module of dimension $\neq |E(H)|$.

```
H_{\mathbf{c}_1}(H_0^{\vee})
H_{\mathbf{c}_1}(H^{\vee})
    \Box
H_{c_1}(E(H))
 H_{c}(E(H))
H_{\mathbf{c}_2}(D_d)
```

Remember: We want to construct an $H_c(E(H))$ -module of dimension $\neq |E(H)|$.

Step 1: Reduction to $H_{c_1}(H^{\vee})$ and D_d .

```
H_{c_1}(H_0^{\vee})
    H_{\mathbf{c}_1}(H^{\vee})
   \Box
H_{c_1}(E(H))
 H_{c}(E(H))
H_{\mathbf{c}_2}(D_d)
```

Remember: We want to construct an $H_c(E(H))$ -module of dimension $\neq |E(H)|$.

Step 1: Reduction to $H_{c_1}(H^{\vee})$ and D_d .

We can induce any simple $H_{c_1}(H^{\vee})$ -module L to an $H_{c_1}(E(H))$ -module M with dim $M=2\dim L$.

```
H_{\mathbf{c}_1}(H_0^{\vee})
    \Box
H_{\mathbf{c}_1}(H^{\vee})
    H_{C_1}(E(H))
 H_{c}(E(H))
H_{\mathbf{c}_2}(D_d)
```

Remember: We want to construct an $H_c(E(H))$ -module of dimension $\neq |E(H)|$.

Step 1: Reduction to $H_{c_1}(H^{\vee})$ and D_d .

We can induce any simple $H_{c_1}(H^{\vee})$ -module L to an $H_{c_1}(E(H))$ -module M with dim $M=2\dim L$.

Theorem

This is an $H_c(E(H))$ -module if and only if all the constituents of $M|_{D_d}$ are \mathbf{c}_2 -rigid, i.e. if they are isomorphic to a simple $H_{\mathbf{c}_2}(D_d)$ -module.

```
H_{\mathbf{c}_1}(H_0^{\vee})
    \Box
H_{C_1}(H^{\vee})
    H_{c_1}(E(H))
 H_{c}(E(H))
H_{\mathbf{c}_2}(D_d)
```

Remember: We want to construct an $H_c(E(H))$ -module of dimension $\neq |E(H)|$.

Step 1: Reduction to $H_{c_1}(H^{\vee})$ and D_d .

We can induce any simple $H_{c_1}(H^{\vee})$ -module L to an $H_{c_1}(E(H))$ -module M with dim $M=2\dim L$.

Theorem

This is an $H_c(E(H))$ -module if and only if all the constituents of $M|_{D_d}$ are \mathbf{c}_2 -rigid, i.e. if they are isomorphic to a simple $H_{\mathbf{c}_2}(D_d)$ -module.

Step 2: Reduction to H_0 .

```
H_{\mathbf{c}_1}(H_0^{\vee})
    \Box
H_{C_1}(H^{\vee})
    H_{c_1}(E(H))
 H_{c}(E(H))
H_{\mathbf{c}_2}(D_d)
```

Remember: We want to construct an $H_c(E(H))$ -module of dimension $\neq |E(H)|$.

Step 1: Reduction to $H_{c_1}(H^{\vee})$ and D_d .

We can induce any simple $H_{c_1}(H^{\vee})$ -module L to an $H_{c_1}(E(H))$ -module M with dim $M=2\dim L$.

Theorem

This is an $H_c(E(H))$ -module if and only if all the constituents of $M|_{D_d}$ are \mathbf{c}_2 -rigid, i.e. if they are isomorphic to a simple $H_{c_2}(D_d)$ -module.

Step 2: Reduction to H_0 .

For $\lambda \in Irr(H)$, we have $\lambda|_{H_0} \in Irr(H_0)$ giving rise to a simple $H_{c_1}(H_0^{\vee})$ -module $L(\lambda|_{H_0})$ with dim $L(\lambda|_{H_0}) \leq |H_0|$.

 $H_{\mathbf{c}_1}(H_0^{\vee})$ \Box $H_{C_1}(H^{\vee})$ $H_{c_1}(E(H))$ $H_{c}(E(H))$ $H_{\mathbf{c}_2}(D_d)$

Remember: We want to construct an $H_c(E(H))$ -module of dimension $\neq |E(H)|$.

Step 1: Reduction to $H_{c_1}(H^{\vee})$ and D_d .

We can induce any simple $H_{c_1}(H^{\vee})$ -module L to an $H_{c_1}(E(H))$ -module M with dim $M=2\dim L$.

Theorem

This is an $H_c(E(H))$ -module if and only if all the constituents of $M|_{D_d}$ are \mathbf{c}_2 -rigid, i.e. if they are isomorphic to a simple $H_{c_2}(D_d)$ -module.

Step 2: Reduction to H_0 .

For $\lambda \in Irr(H)$, we have $\lambda|_{H_0} \in Irr(H_0)$ giving rise to a simple $H_{c_1}(H_0^{\vee})$ -module $L(\lambda|_{H_0})$ with dim $L(\lambda|_{H_0}) \leq |H_0|$.

Lemma

The module $L(\lambda|_{H_0})$ is a simple $H_{c_1}(H^{\vee})$ -module as well.

 $H_{\mathbf{c}_2}(D_d)$

- 1. The Classification Problem
- 2. The Groups in Question
- 3. Symplectic Reflection Algebras

4. Conclusion

Conclusion

We can construct an $H_{\mathbf{c}}(E(H))$ -module M with dim M < |E(H)|, if we can find λ such that $L(\lambda|_{H_0})|_{D_d}$ is \mathbf{c}_2 -rigid and $H_0 \lneq H$.

Conclusion

We can construct an $H_{\mathbf{c}}(E(H))$ -module M with dim M<|E(H)|, if we can find λ such that $L(\lambda|_{H_0})|_{D_d}$ is \mathbf{c}_2 -rigid and $H_0 \lneq H$.

Theorem

Such a module exists except in possibly 73 cases.

Conclusion

We can construct an $H_{\mathbf{c}}(E(H))$ -module M with dim M < |E(H)|, if we can find λ such that $L(\lambda|_{H_0})|_{D_d}$ is \mathbf{c}_2 -rigid and $H_0 \lneq H$.

Theorem

Such a module exists except in possibly 73 cases.

Using the ${\rm MAGMA\text{-}package~CHAMP}$ (Thiel, 2013) we can improve those theoretical bounds and obtain sharp bounds in many cases:

Conclusion

We can construct an $H_{\mathbf{c}}(E(H))$ -module M with dim M < |E(H)|, if we can find λ such that $L(\lambda|_{H_0})|_{D_d}$ is \mathbf{c}_2 -rigid and $H_0 \lneq H$.

Theorem

Such a module exists except in possibly 73 cases.

Using the $\rm MAGMA\text{-}package~CHAMP}$ (Thiel, 2013) we can improve those theoretical bounds and obtain sharp bounds in many cases:

Refined Theorem

Such a module exists except in possibly 39 cases. In at least 18 of them no such module exists.

Conclusion

We can construct an $H_{\mathbf{c}}(E(H))$ -module M with dim M < |E(H)|, if we can find λ such that $L(\lambda|_{H_0})|_{D_d}$ is \mathbf{c}_2 -rigid and $H_0 \lneq H$.

Theorem

Such a module exists except in possibly 73 cases.

Using the ${\rm MAGMA\text{-}package~CHAMP}$ (Thiel, 2013) we can improve those theoretical bounds and obtain sharp bounds in many cases:

Refined Theorem

Such a module exists except in possibly 39 cases. In at least 18 of them no such module exists.

Final result (so far)

Let $G \leq \operatorname{Sp}(V)$ be a symplectically primitive complex imprimitive symplectic reflection group. Then the corresponding quotient V/G does not admit a symplectic resolution except in possibly 39 cases.