
Introduction to the Involutive package

Calling Sequence:
     Involutive[<function>](args)
     <function>(args)

Description:

• The Involutive package provides algorithms for the involutive analysis of ideals in commutative polynomial rings and more generally 
for submodules of free modules over polynomial rings. Its main purpose is the analysis of systems of polynomial equations.

• The main algorithm designed by Gerdt and Blinkov is a substantial improvement of Janet’s algorithm for analysing systems of linear 
partial differential equations adapted to polynomial equations. This is based on the observation that both systems of linear partial 
differential equations with constant coefficients and polynomial equations are two different languages to talk about submodules of 
free modules over polynomial rings.

• The main algorithm for this package, called InvolutiveBasis, produces standard generators for submodules of free modules over 
polynomial rings, which are given by any finite set of generators. These can be used as input for various other commands, e. g., to 
give quantitative information about the residue class module. They are also used in the command PolInvReduce to produce a normal 
form for representatives of residue classes. The polynomial ring is defined over (a field extension of) the rational numbers by default. 
By means of the command InvolutiveOptions it can be changed to integer coefficients or coefficients in (an extension of) a field of 
non-zero characteristic.

• Involutive bases are special Groebner bases, provided e. g. by the Groebner package. The main difference is that involutive division 
provides a different strategy to obtain deductions and reduce polynomials. The rules, which element of the involutive basis has to be 
applied first, when performing reduction, are rather strict and governed by the concept of multiplicative and nonmultiplicative 
variables, i.e. variables which are allowed resp. not allowed as quotients for involutive divisions by an element of the involutive basis. 
For details see the references below and the explanations in PolTabVar.

• To use a function of the Involutive package, either define that function alone using the command with(Involutive, <function>), or 
define all Involutive functions using the command with(Involutive). Alternatively, invoke the function using the long form 
Involutive[<function>].

• The functions available in the Involutive package are the following:



Basic commands:

      InvolutiveBasis            InvolutiveBasisFast        InvolutiveBasisGINV 
      PolInvReduce               PolInvReduceFast           PolInvReduceGINV  
      PolTabVar                  PolHilbertSeries

      FactorModuleBasis          SubmoduleBasis   

  Further commands for the computation of involutive bases:
      AddRhs                     AssertInvBasis             InvolutiveOptions  
      InvolutivePreprocess       Substitute                 PolZeroSets  


  Commands for special applications: 

      PolMinPoly                 Syzygies                   PolResolution   
      SyzygyModule               SyzygyModuleFast           SyzygyModuleGINV  
      NoetherNormalization       PolShorterResolution       PolShortestResolution  
      PolResolutionDim           PolEulerChar               PolRepres      

      Annihilator                PolCoeff
      Repres                     PolWeightedHilbertSeries

      PolLeftInverse             PolRightInverse
      PolSyzOp                   CoeffList 
      PolFactorize               NotHas/Has

  

  Commands for module theory: 

      PolSum                     PolDirectSum               PolIntersection  
      PolSubFactor               PolCheckHom                PolDefect 
      PolHom                     PolHomHom

      PolKernel                  PolCokernel
      PolExt1                    PolExtn   
      PolParametrization         PolTorsion   




      PolParametrization         PolTorsion   


  Commands for various invariants derivable from PolHilbertSeries or SubmoduleHilbertSeries: 

      PolIndexRegularity         PolDimension

      PolHilbertPolynomial       PolHilbertFunction

      PolHP                      PolHF

      PolCartanCharacter         SubmoduleDimension  
      SubmoduleHF                SubmoduleHP  
      SubmoduleHilbertFunction   SubmoduleHilbertPolynomial  
      SubmoduleHilbertSeries    


  Alternate Groebner basis commands:

      GroebnerBasis              GroebnerBasisFast          GroebnerBasisGINV 


  Auxiliary commands:

      LeadingMonomial            JanetGraph                 Stats



• For a description of the basic algorithms, see V. P. Gerdt, "Involutive Algorithms for Computing Groebner Bases", in: S. Cojocaru, G. 
Pfister, V. Ufnarovski, "Computational Commutative and Non-Commutative Algebraic Geometry", NATO Science Series, IOS Press, 
2005, pp. 199-225; or V. P. Gerdt, "Involutive Division Technique: Some Generalizations and Optimizations", Journal of 
Mathematical Sciences 108(6), 2002, pp. 1034-1051.

• For a description of the packages Involutive and Janet, see Y. A. Blinkov, C. F. Cid, V. P. Gerdt, W. Plesken, D. Robertz, "The 
MAPLE package ’Janet’: I. Polynomial Systems, II. Linear Partial Differential Equations", in: V. G. Ganzha, E. W. Mayr, E. V. 
Vorozhtsov (eds.), Proceedings of Computer Algebra in Scientific Computing CASC 2003, Passau, pp. 31-40 resp. 41-54.

• For a more general description of Janet’s philosophy, see W. Plesken, D. Robertz, "Janet’s approach to presentations and resolutions 
for polynomials and linear pdes", Archiv der Mathematik, 84(1), 2005, pp. 22-37. For more applications, see D. Robertz, "Janet Bases 
and Applications", in: M. Rosenkranz, D. Wang (eds.), "Groebner Bases in Symbolic Analysis", Radon Series on Computational and 
Applied Mathematics 2, de Gruyter, 2007, pp. 139-168.

Examples:
> with(Involutive):
First we choose the variables of the considered polynomial ring R:
> var := [x1,x2,x3];

 := var [ ], ,x1 x2 x3
We want to calculate the Janet basis for the polynomial ideal I generated by the following polynomials:
> L := [x1+x2+x3-a1, x1*x2 + x2*x3 + x3*x1-a2, x1*x2*x3-a3];

 := L [ ], ,+ + −x1 x2 x3 a1 + + −x1 x2 x2 x3 x3 x1 a2 −x1 x2 x3 a3
The Janet basis is computed w. r. t. degree reverse lexicographical order: 
> IB := InvolutiveBasis(L, var);

 := IB [ ], , ,+ + −x1 x2 x3 a1 + + − − +x22 x2 x3 x32 a1 x2 a1 x3 a2 − + − +a3 x33 a1 x32 a2 x3 − + − +a3 x2 x33 x2 a1 x32 x2 a2 x3 x2
PolTabVar displays the internal data structure which was created by InvolutiveBasis, in particular containing the list of multiplicative 
and non-multiplicative variables:
> PolTabVar();

[ ], ,+ + −x1 x2 x3 a1 [ ], ,x1 x2 x3 x1

[ ], ,+ + − − +x22 x2 x3 x32 a1 x2 a1 x3 a2 [ ], ,* x2 x3 x22

[ ], ,− + − +a3 x33 a1 x32 a2 x3 [ ], ,* * x3 x33

[ ], ,− + − +a3 x2 x33 x2 a1 x32 x2 a2 x3 x2 [ ], ,* * x3 x33 x2
Compute the Hilbert series of the quotient ring R/I: 
> PolHilbertSeries();

+ + +1 2 s 2 s2 s3

Next problem: Find the normal forms of the residue classes in R/I which contain the following polynomials: 
> PolInvReduce(x1, IB, var);

PolInvReduce(x1^2, IB, var);

PolInvReduce(x1^3, IB, var);

− − +x2 x3 a1

− − − +a1 2 a2 a1 x3 a1 x2 x2 x3

+ − − + − + +a3 a1 3 2 a2 a1 a1 2 x3 a2 x3 a1 2 x2 a2 x2 a1 x3 x2
> PolInvReduce(x1^3-a1*x1^2+a2*x1-a3, IB, var);



0

See Also:
with, Janet, JanetOre.




Involutive[AddRhs] -  add unit vectors as right hand sides to the entries of a list

Calling Sequence:
     AddRhs(L,R)

Parameters:
 L    -   list (of arbitrary entries)
 R    -   (optional) list (of arbitrary entries)

Description:

• AddRhs substitutes each entry m of L by m=e, where e is the i-th unit row vector (i.e. a list) if m is at position i in the list L, and returns 
this new list.

• If the optional second parameter R is provided, then the right hand sides to be assigned to the entries of L are taken from R.

• If L is a matrix, then the method described above is applied to the list of rows of L.

Example:
> with(Involutive):
> L := [x^2,x+y,z^3];

 := L [ ], ,x2 +x y z3

> AddRhs(L);

[ ], ,=x2 [ ], ,1 0 0 =+x y [ ], ,0 1 0 =z3 [ ], ,0 0 1
> AddRhs(L, [a,b,c]);

[ ], ,=x2 a =+x y b =z3 c
> M := matrix(map(i->[i], L));

 := M













x2

+x y

z3

> AddRhs(M);

[ ], ,=[ ]x2 [ ], ,1 0 0 =[ ]+x y [ ], ,0 1 0 =[ ]z3 [ ], ,0 0 1

See Also:
InvolutiveBasis, Syzygies.




Involutive[Annihilator] -  return involutive basis of the annihilator of a submodule of a finitely presented module over a 

polynomial ring

Calling Sequence:
     Annihilator(p,L,var)

Parameters:
  p     - (list (of lists of the same length) of) polynomial(s)

  L     - list (of lists of the same length) of polynomials
  var   - list of variables of the polynomial ring

Description:

• Annihilator computes the annihilator of the submodule generated by the residue class(es) of p in the module presented by L over the 
polynomial ring with variables var, i.e. the ideal of those elements in the polynomial ring which satisfy that their product by the 
module generated by the residue class(es) of p lies in the module presented by L.

• Residue classes are taken in the factor module given by the free module of tuples over the polynomial ring in var modulo the 
submodule generated by L. This means that the annihilator consists of those elements in the polynomial ring whose associated 
multiplication map sends all elements of the module generated by the residue class(es) of p to zero in this factor module.

• The entries of L are polynomials in case of an ideal, i.e. a submodule of the free module of rank one, or lists of polynomials of length 

m, representing elements of the free module of m-tuples over the polynomial ring. In the first case, p may be a polynomial. Then the 

annihilator of the module generated by the residue class of p is computed. If m is greater than 1, then p may be a list of polynomials in 
which case the annihilator of the module generated by the residue class of p is computed. In general, p is a list or a list of lists of the 

same length of polynomials according to the value of m. Then the annihilator of the module generated by the residue classes of the 
elements of p is computed.

• The result of Annihilator is an involutive basis of the annihilator defined above.

Examples:
> with(Involutive):


Example 1:


> var := [x];

 := var [ ]x
> Annihilator(x-1, [x^2-1], var);

[ ]+x 1


Example 2:


> var := [x,y];

 := var [ ],x y
> Annihilator([x^3, 0], [[x^4, 0], [0, x^4]], var);

[ ]x
> Annihilator([x^3, x^2], [[x^4, 0], [0, x^4]], var);

[ ]x2



Example 3:


> var := [x,y];

 := var [ ],x y
> P := [x-1, y-2];

 := P [ ],−x 1 −y 2



> L := [x^2-1, y*x-2*x+y-2];

 := L [ ],−x2 1 − + −yx 2 x y 2
> Annihilator(P, L, var);

[ ]+x 1


Example 4:


> var := [x,y];

 := var [ ],x y
> P := [[x^2-1, y-2], [1, 0]];

 := P [ ],[ ],−x2 1 −y 2 [ ],1 0
> L := [[x+1, 0], [0, y*x-2*x+y-2]];

 := L [ ],[ ],+x 1 0 [ ],0 − + −yx 2 x y 2
> Annihilator(P, L, var);

[ ]+x 1

See Also:
InvolutiveBasis, PolInvReduce, PolHilbertSeries, Syzygies, SyzygyModule, PolResolution, PolSubFactor, PolHom, PolHomHom, 
PolExt1, PolExtn, PolTorsion, PolParametrization, PolSyzOp.




Involutive[AssertInvBasis] -  assure the system that given (lists of) polynomials form a Janet basis

Calling Sequence:
     AssertInvBasis(L,var,ord,mode)

Parameters:
 L    - list (or matrix) of generators of the submodule
 var  - list of variables (of the polynomial ring)
  ord  - (optional) change of monomial ordering (see below)
  mode - (optional) string specifying options for the computation

Description:

• The internal result of the command AssertInvBasis is that the data structure for the current involutive basis is set up such that 
commands like PolHilbertSeries, FactorModuleBasis, PolTabVar, etc. can be invoked.

• All parameters to AssertInvBasis have the same meaning as in InvolutiveBasis.

• AssertInvBasis returns the list L.

• One typical situation where AssertInvBasis is used is to make an earlier computed involutive basis after at least one further call of 
InvolutiveBasis again to the current involutive basis without recomputing it.

• Another, usually more important, use for AssertInvBasis is for big polynomial systems. In this case one can use InvolutiveBasisFast 
and apply AssertInvBasis to the result defining it as the current involutive basis in Maple.

Examples:
> with(Involutive):


Example 1:  Working with two Janet bases


> var := [x,y];

 := var [ ],x y
> L1 := [x-y];

 := L1 [ ]−x y
> J1 := InvolutiveBasis(L1, var):
> PolHilbertSeries(t);

+1
t

−1 t
> L2 := [[x,-y], [y,x]];

 := L2 [ ],[ ],x −y [ ],y x
> J2 := InvolutiveBasis(L2, var):
> PolHilbertSeries(t);

+2 2
t

−1 t
> AssertInvBasis(J1, var):
> PolHilbertSeries(t);

+1
t

−1 t


Example 2:  Setting up the internal data structure after the use of InvolutiveBasisFast


> var := [x,y,z];

 := var [ ], ,x y z
> L := [[x^2, -x*y], [y^3, x^2], [x*y*z, x*y^2]];

 := L [ ], ,[ ],x2 −xy [ ],y3 x2 [ ],xyz xy2



> IB := InvolutiveBasisFast(L, var);

 := IB [ ], , , , , ,[ ],x2 −xy [ ],y3 x2 [ ],xyz xy2 [ ],xy3 x3 [ ],−xyz2 x2 y2 [ ],0 +x4 x3 z [ ],xyz3 x3 y2

> AssertInvBasis(IB, var):
> FactorModuleBasis(var);









,+ + + + +

y2

−1 z

y

−1 z

1

−1 z

xy2

−1 z

xy

−1 z

x

−1 z
+ + + + + +

xy

−1 z

x

−1 z

x2 y

−1 z

x2

−1 z

x3 y

−1 z

x3

−1 z

1

( )−1 y ( )−1 z
> PolHilbertSeries(t);

+ + + + +2 6 t 11 t2 15 t3 17 t4 t5








+17

1

−1 t

1

( )−1 t 2

See Also:
InvolutiveBasis, PolTabVar, InvolutiveOptions, PolInvReduce, FactorModuleBasis, PolHilbertSeries, PolWeightedHilbertSeries, 
Syzygies, SyzygyModule, PolCartanCharacter.




Involutive[CoeffList] -  express a (tuple of) polynomial(s) in a given vector space basis of monomials

Calling Sequence:
     CoeffList(p,var,B)

Parameters:
  p     -  (tuple of) polynomial(s) in var to be expressed
  var   -  list of variables (of the polynomial ring)
  B     -  vector space basis given as list of monomials or generating function (result of FactorModuleBasis)

Description:

• CoeffList returns the list of coefficients of the unique representation of p in the vector space basis B.

• The parameter p is either a polynomial in the variables var or a tuple given as a list of polynomials in var.

• var is the list of variables of the polynomial ring.

• The list B is expected to be a result of a previous call of FactorModuleBasis. If p is a polynomial, then B is expected to be a factor 

module basis computed for a residue class module of the polynomial ring in var. If p is a list of polynomials of length m, then B is 

expected to be a factor module basis computed for a factor module of the free module of tuples of polynomials in var of rank m.

• If p is in the span of the vector space basis B, then the result is the list of coefficients of the unique representation of p in the basis B.

• If p is not in the span of B, then the result is the monomial in p which is not an element of B and which is encountered first by 
CoeffList. If p is a list of polynomials, then the result is accordingly a list of the same length with exactly one non-zero entry which is 
a monomial in var (cf. Example 2).

• If B is a list, i.e. the vector space basis is finite, then the resulting list has as many entries as B, and these entries are in the ground field.

• If B is given as generating function, e.g. B is the sum of monomials according to a disjoint cone decomposition of a factor module, 

then the i-th entry of the resulting list is a polynomial in the multiplicative variables for the i-th cone in the basis B, i.e. a polynomial in 
the variables occurring in the corresponding denominator, where the cones are sorted by their vertices with respect to the 
degree-reverse lexicographic ordering (cf. Example 3). The number of entries equals the number of cones in this case.

Examples:
> with(Involutive):


Example 1:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+y+z, x*y+y*z+z*x, x*y*z-1];

 := L [ ], ,+ +x y z + +xy yz z x −xyz 1
> InvolutiveBasis(L, var);

[ ], , ,+ +x y z + +y2 yz z2 −z3 1 −z3 y y
> F := FactorModuleBasis(var);

 := F [ ], , , , ,1 z y z2 yz z2 y
> p := a + b*z + c*y + d*z^2 + e*y*z + f*z^2*y;

 := p + + + + +a b z cy d z2 eyz f z2 y
> CoeffList(p, var, F);

[ ], , , , ,a b c d e f
The next polynomial is not in the span of F.
> p := x+1;

 := p +x 1
> CoeffList(p, var, F);



x


Example 2:


> var := [x,y];

 := var [ ],x y
> L2 := [[x^2-1, 0], [x*y, x*y], [0, y^2-1]];

 := L2 [ ], ,[ ],−x2 1 0 [ ],xy xy [ ],0 −y2 1
> InvolutiveBasis(L2, [x,y]);

[ ], , , , ,[ ],0 −y2 1 [ ],xy xy [ ],y2 x2 [ ],−x2 1 0 [ ],−y3 y 0 [ ],0 −y2 x x
> F := FactorModuleBasis(var);

 := F [ ], , , , , , ,[ ],0 1 [ ],0 y [ ],0 x [ ],0 xy [ ],1 0 [ ],y 0 [ ],x 0 [ ],y2 0
> p := [1+3*y, 5*x+7*x*y];

 := p [ ],+1 3 y +5 x 7 xy
> CoeffList(p, var, F);

[ ], , , , , , ,0 0 5 7 1 3 0 0
The next tuple is not in the span of F.
> p := [1+y^2, x^2];

 := p [ ],+1 y2 x2

> CoeffList(p, var, F);

[ ],0 x2



Example 3:


> var := [x,y];

 := var [ ],x y
> L := [x^2*y-x, x*y^2-y];

 := L [ ],−x2 y x −xy2 y
> InvolutiveBasis(L, var);

[ ],−xy2 y −x2 y x
> F := FactorModuleBasis(var);

 := F + + +
1

−1 y

x2

−1 x
x xy

> FactorModuleBasis(var, "C");

[ ], , ,1 x xy x2

> CoeffList(3 + 2*x + 7*x*y + (-12)*x^2, var, F);

[ ], , ,3 2 7 -12
> CoeffList(3*y^2 + 2*x + 7*x*y + (-12)*x^5, var, F);

[ ], , ,3 y2 2 7 −12 x3

See Also:
InvolutiveBasis, PolInvReduce, FactorModuleBasis, SubmoduleBasis, PolRepres, Repres.




Involutive[FactorModuleBasis] -  return a vector space basis for the residue class module (or a generating function 
for it)

Calling Sequence:
     FactorModuleBasis(var,mode)

Parameters:
 var  -   list of variables (of the polynomial ring)
 mode -   (optional) string specifying options

Description:

• FactorModuleBasis returns a vector space basis for the residue class module of the free module over the polynomial ring modulo the 
submodule generated by the Janet basis of the last call of InvolutiveBasis, in case the factor module is finite dimensional as a vector 
space.

• If the factor module is infinite dimensional, a generating function is produced whose monomial summands are the representatives of 
the standard monomial basis vectors of the residue class module: A term of the form m/((1-x1)...(1-xn)) ei stands for the residues of those 

vectors which, according to the geometric series expansion, are all multiples of m ei by any monomial in the variables x1,...,xn. Here m 

stands for a monomial in the indeterminates var and ei for the i-th standard basis vector of the free module. See also the explanation of 
the option "G" below.

• var is the list of variables of the polynomial ring that was given as parameter to InvolutiveBasis before.

• The optional argument mode is a string which may contain the letters "C", "G", "L" and "M".

• If the letter "G" is present in mode, but the letter "C" is not, then FactorModuleBasis is forced to return a generating function as 
described above even if the factor module is finite dimensional (cf. Example 3 below).

• If the factor module is infinite dimensional and the letter "C" is contained in mode, then the numerators m of the resulting generating 
function are returned in a list (cf. Example 2 below). If additionally the letter "M" is present in mode, then the result of 

FactorModuleBasis is a list of lists [ ],m v , where m is the numerator as above and v is the list of multiplicative variables for the cone 
with vertex m.

• The presence of the letter "L" in mode only has an effect if InvolutiveBasisFast or InvolutiveBasisGINV has been called before. In this 
case FactorModuleBasis determines its result using the output data of the last call of InvolutiveBasisFast resp. InvolutiveBasisGINV, 
whichever was called last. This means that in this case it is not necessary to update the internal data structure for the current involutive 
basis using AssertInvBasis before calling FactorModuleBasis (cf. Example 4 below). However, the user must be aware that the 
current involutive basis in Maple may then be different from the involutive basis which was computed by the last call of 
InvolutiveBasisFast resp. InvolutiveBasisGINV, so that the results of FactorModuleBasis with and without option "L" are in general 
different.

• The resulting basis contains monomials with coefficient 1. The list is sorted using degree reverse lexicographical ordering ("position 
over term" in the module case).

• For more information about factor module bases, see W. Plesken, D. Robertz, "Janet’s approach to presentations and resolutions for 
polynomials and linear pdes", Archiv der Mathematik, 84(1), 2005, 22-37.

Examples:
> with(Involutive):


Example 1:


> var := [x,y];

 := var [ ],x y
> L := [x^2, x*y^2, y^3];

 := L [ ], ,x2 xy2 y3



> InvolutiveBasis(L, var);

[ ], ,x2 y3 xy2

> FactorModuleBasis(var);

[ ], , , ,1 y x y2 xy
Note, the sum of the coefficients of the Hilbert series is the length of the basis for the residue class module:
> PolHilbertSeries();

+ +1 2 s 2 s2



Example 2:


Here is an example, where the factor module is infinite dimensional. FactorModuleBasis returns the corresponding generating 
function:
> var := [x,y];

 := var [ ],x y
> L := [x*y];

 := L [ ]xy
> InvolutiveBasis(L, var);

[ ]xy
> FactorModuleBasis(var);

+
1

−1 y

x

−1 x
> FactorModuleBasis(var, "C");

[ ],1 x


Example 3:


Example for a module over the polynomial ring Q[x,y]:
> var := [x,y];

 := var [ ],x y
> L := [[x^2, 0], [y^2, 0], [0, x*y^2], [0, x^3], [0, y^4]];

 := L [ ], , , ,[ ],x2 0 [ ],y2 0 [ ],0 xy2 [ ],0 x3 [ ],0 y4

> InvolutiveBasis(L, var);

[ ], , , , , ,[ ],y2 0 [ ],x2 0 [ ],0 xy2 [ ],xy2 0 [ ],0 x3 [ ],0 y4 [ ],0 x2 y2

> PolHilbertSeries();

+ + +2 4 s 4 s2 2 s3

> FactorModuleBasis(var);

[ ], , , , , , , , , , ,[ ],0 1 [ ],0 y [ ],0 x [ ],0 y2 [ ],0 xy [ ],0 x2 [ ],0 y3 [ ],0 x2 y [ ],1 0 [ ],y 0 [ ],x 0 [ ],xy 0
> FactorModuleBasis(var, "G");

[ ],+ + +y 1 xy x + + + + + + +y3 y2 y 1 xy x x2 y x2



Example 4:


> restart;
> with(Involutive):
> InvolutiveBasisFast([x*y], [x,y]);

[ ]xy
> FactorModuleBasis([x,y], "L");

+
1

−1 y

x

−1 x

See Also:
InvolutiveBasis, PolTabVar, JanetGraph, SubmoduleBasis, PolHilbertSeries, PolWeightedHilbertSeries, PolMinPoly, PolRepres, 
CoeffList.




Involutive[GroebnerBasis] -  return minimal Groebner basis of a submodule of a free module over a polynomial ring

Calling Sequence:
     GroebnerBasis(L,var,ord,mode,opt)

Parameters:
 L    - list (or matrix) of generators of the submodule
 var  - list of variables (of the polynomial ring)
 ord  - (optional) change of monomial ordering
 mode - (optional) string specifying options for the computation
 opt  - (optional) equation specifying options for the computation

Description:

• GroebnerBasis returns the minimal Groebner basis of a submodule of the free module of m-tuples of polynomials given by the 
generators in L with respect to a certain ordering. The default ordering is degree reverse lexicographical. The leading coefficients in 
the resulting Groebner basis are normalized to 1.

• The Groebner basis is extracted from the involutive basis of the given submodule (which is, in general, a redundant Groebner basis 
because of the separation of the variables into multiplicative and non-multiplicative ones). Hence, GroebnerBasis passes its arguments 
to InvolutiveBasis and extracts the minimal Groebner basis from this result. Therefore, Janet’s data (see PolTabVar) contains 
information about the involutive basis of the given submodule.

• All parameters to GroebnerBasis have the same meaning as in InvolutiveBasis.

• The output is a list containing the Groebner basis for the submodule generated by L with respect to the chosen ordering.

• By means of the command InvolutiveOptions one can also choose between two implementations of GroebnerBasis: "Maple" and 
"C++".

Examples:
> with(Involutive):
> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+y+z, x*y+y*z+z*x, x*y*z-1];

 := L [ ], ,+ +x y z + +xy yz z x −xyz 1
> InvolutiveBasis(L, var);

[ ], , ,+ +x y z + +y2 yz z2 −z3 1 − +y z3 y
> GroebnerBasis(L, var);

[ ], ,+ +x y z + +y2 yz z2 −z3 1
> PolTabVar();

[ ], ,+ +x y z [ ], ,x y z x

[ ], ,+ +y2 yz z2 [ ], ,* y z y2

[ ], ,−z3 1 [ ], ,* * z z3

[ ], ,− +y z3 y [ ], ,* * z z3 y

See Also:
InvolutiveBasis, GroebnerBasisFast, GroebnerBasisGINV, PolTabVar, JanetGraph, InvolutiveOptions, LeadingMonomial.




Involutive[GroebnerBasisFast] -  return minimal Groebner basis of a submodule of a free module over a polynomial 

ring (C++ version)

Calling Sequence:
     GroebnerBasisFast(L,var,ord,mode,opt)

Parameters:
 L    - list (or matrix) of generators of the submodule
 var  - list of variables (of the polynomial ring)
 ord  - (optional) change of polynomial ordering
 mode - (optional) string specifying options for the computation
 opt  - (optional) equation specifying options for the computation

Description:

• GroebnerBasisFast computes the minimal Groebner basis of a submodule of the free module of m-tuples of polynomials given by the 
generators in L with respect to a certain ordering using InvolutiveBasisFast instead of InvolutiveBasis (cf. GroebnerBasis). Up to now, 
only the algorithm for the degree reverse lexicographical ordering (i.e. ord is 2 or 4) is implemented in C++. If GroebnerBasisFast is 
called choosing a different monomial ordering, then InvolutiveBasis is applied instead of InvolutiveBasisFast.

• All parameters to GroebnerBasisFast have the same meaning as in InvolutiveBasisFast.

• The advantage of this command is clearly the enormous speed up. (Note, you cannot interrupt this command from within Maple; you 
have to kill the process "JB" instead.)

• Using the option "C++" of InvolutiveOptions, the command GroebnerBasis is replaced by GroebnerBasisFast for the current Maple 
session.

Examples:
> with(Involutive):
> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+y+z, x*y+y*z+z*x, x*y*z-1];

 := L [ ], ,+ +x y z + +xy yz z x −xyz 1
> InvolutiveBasis(L, var);

[ ], , ,+ +x y z + +y2 yz z2 −z3 1 − +y z3 y
> GroebnerBasisFast(L, var);

[ ], ,+ +x y z + +y2 yz z2 −z3 1

See Also:
InvolutiveBasis, InvolutiveBasisFast, GroebnerBasisGINV, InvolutiveOptions, PolTabVar, FactorModuleBasis, PolInvReduce, 
PolInvReduceFast, GroebnerBasis, SyzygyModule, SyzygyModuleFast.




Involutive[GroebnerBasisGINV] -  Python/C++ version of GroebnerBasis

Calling Sequence:
     GroebnerBasisGINV(L,var,ord,mode,opt)

Parameters:
 L    - list (or matrix) of generators of the submodule
 var  - list of variables (of the polynomial ring)
 ord  - (optional) change of monomial ordering
 mode - (optional) string specifying options for the computation
 opt  - (optional) sequence of equations specifying options for the computation

Description:

• GroebnerBasisGINV computes the minimal Groebner basis of a submodule of the free module of m-tuples of polynomials given by 
the generators in L with respect to a certain ordering using InvolutiveBasisGINV instead of InvolutiveBasis (cf. GroebnerBasis), i.e. 
GroebnerBasisGINV is a version of the command GroebnerBasis which uses the C++ module ginv for Python to perform the 
involutive basis computation.

• The parameters L, var, ord, and mode have the same meaning as in GroebnerBasis.

• The advantage of this command is clearly the enormous speed up. (Note, you cannot interrupt this command from within Maple; you 
have to kill the corresponding process "python" instead.)

• Possible left hand sides of the optional equations opt are the strings "char", "algext", "time", "Name", "denom", "donotread", 
"MovedBound", and "QlengthBound".

• If an equation "char"=c is provided in opt by the user, then c is expected to be zero or a prime number. In this case, the involutive 

basis is computed in characteristic c (cf. Example 2). The purpose of this option is to compute just one Groebner basis in characteristic 
c. If further commands like PolMinPoly shall be applied afterwards, the characteristic of the ground field must be changed by using 
the command InvolutiveOptions.

• The right hand side of an equation "algext"=p in opt is expected to be a univariate polynomial in an indeterminate ζ which does not 

occur in var. The coefficients of p must be algebraic over the ground field in the sense that they are rational expressions in RootOf 

and indeterminates ξ used in the right hand sides of other equations "algext"=q in opt. This extends the ground field (defined so far) 

by ζ which has minimal polynomial p, i.e. every occurrence of ζ in L is subject to the relation =p 0 (cf. Example 3).

• If "time"=t is given in opt, then t is expected to be a non-negative integer. In this case, the involutive basis computation is stopped 

after t seconds. If the program was not able to construct the result before t seconds, then a warning is printed (cf. Example 4).

• The right hand side of an equation "Name"=s is expected to be a string. GroebnerBasisGINV appends s to the default name for the 
temporary file to which the input for ginv is written.

• For more information about ginv, cf. http://invo.jinr.ru and http://wwwb.math.rwth-aachen.de/Janet.

Examples:
> with(Involutive):


Example 1:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+y+z, x*y+y*z+z*x, x*y*z-1];

 := L [ ], ,+ +x y z + +xy yz z x −xyz 1
> InvolutiveBasisGINV(L, var);

[ ], , ,+ +x y z + +y2 yz z2 −z3 1 −yz3 y
> GroebnerBasisGINV(L, var);



[ ], ,+ +x y z + +y2 yz z2 −z3 1


Example 2:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+2*y+3*z, x*y+2*y*z+3*z*x, x*y*z-1];

 := L [ ], ,+ +x 2 y 3 z + +xy 2 yz 3 z x −xyz 1
> GroebnerBasisGINV(L, var, "char"=7);

[ ], , ,+ +x 2 y 3 z +y2 z2 + +yz2 4 z3 5 + +z4 3 y 2 z


Example 3:


> var := [x,y];

 := var [ ],x y
> alias(omega=RootOf(Z^2+Z+1));

ω
> simplify(omega^3);

1
> factor(zeta^3+omega*zeta+1, omega);

+ +ζ 3 ω ζ 1
> minpoly1 := zeta^3+omega*zeta+1;

 := minpoly1 + +ζ 3 ω ζ 1
> L := [x^2-y^2, y^3-zeta*x^3];

 := L [ ],−x2 y2 −y3 ζ x3

> GroebnerBasisGINV(L, var, "algext"=minpoly1);

[ ], ,−x2 y2 +xy2 ( )+ζ 2 ω y3 y4

> J := GroebnerBasisGINV(AddRhs(L), var, "algext"=minpoly1);

J =−x2 y2 [ ],1 0 =+xy2 ( )+ζ 2 ω y3 [ ],−x +ζ 2 ω y4


=, ,



 := 

+ +
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
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



> simplify(rem(expand(rhs(J[3])[1] * L[1] + rhs(J[3])[2] * L[2]), minpoly1, zeta));

y4

See Also:
InvolutiveBasis, InvolutiveBasisGINV, AssertInvBasis, GroebnerBasisFast, InvolutiveOptions, PolTabVar, FactorModuleBasis, 
PolInvReduce, PolInvReduceFast, Syzygies, SyzygyModule, PolHilbertSeries.




Involutive[InvolutiveBasis] -  return the (unique) minimal Janet basis of a submodule of a free module over a 

polynomial ring

Calling Sequence:
     InvolutiveBasis(L,var,ord,mode,opt)

Parameters:
 L    - list (or matrix) of generators of the submodule
 var  - list of variables (of the polynomial ring)
 ord  - (optional) change of monomial ordering (see below)
 mode - (optional) string specifying options for the computation
 opt  - (optional) equation specifying options for the computation

Description:

• InvolutiveBasis returns the (unique) minimal Janet basis of the submodule of the free module of m-tuples of polynomials given by the 
generators in L with respect to a certain ordering. The default ordering is degree reverse lexicographical. InvolutiveBasis is the main 
function of the package Involutive.

• The polynomial ring is defined over (a field extension of) the rational numbers by default. By means of the command 
InvolutiveOptions it can be changed to integer coefficients or coefficients in (an extension of) a field of non-zero characteristic. If the 
domain of coefficients is a field, then the leading coefficients in the resulting Janet basis are normalized to 1.

• The entries of L are polynomials in case of an ideal, i. e. a submodule of the free module of rank one, or lists of polynomials of length 

m, representing elements of the free module of m-tuples over the polynomial ring. If L is a matrix, then the generators are extracted 
from the rows of L.

• The parameter var is a list specifying the variables of the polynomial ring. If var is [x1, ..., xn], then the ordering of the variables is 

defined to be x1 > x2 > ... > xn. In the module case, the monomial ordering is extended to tuples giving higher priority to standard basis 
vectors whose non-zero component comes first. The sequence of priority can be changed by appending a permutation of the numbers 
1 to m to the variables in var (cf. Example 6 below).

• The output is a list containing the Janet basis for the submodule generated by L with respect to the chosen ordering.

• InvolutiveBasis saves the information in an internal data structure which can be displayed by PolTabVar.

• As optional third parameter natural numbers from 1 to 4 are accepted. If ord = 1, pure lexicographical ordering (elimination ordering) 
is applied. In case ord = 2 the degree reverse lexicographical ordering is chosen. In the module case these two possibilities assume 

"position over term" order, i.e. the leading term of an m-tuple is the leading term of the first non-zero entry. If one prefers to work with 
the "term over position" order, i.e. the leading term of an m-tuple is the greatest of the leading terms of the non-zero entries, then ord 
= 1 is replaced by ord = 3 and ord = 2 by ord = 4. The default is ord = 4. (Further modifications concerning degrees are described 
below. For examples that illustrate the dependence of the leading monomials of a polynomial on the choice of ordering see 
LeadingMonomial.)

• In addition to the orderings described in the preceding paragraph, a block (elimination) ordering can be selected by partitioning the list 
of variables var. In this case the argument var is a list of lists ("blocks") of variables and ord is a list of natural numbers from 1 to 4 
whose length equals the number of blocks. Two monomials are compared w. r. t. the block ordering as follows: The variables of the 
first block are examined first. If the according parts of the two monomials are different, the ordering specified by the first number in 
ord decides which monomial is greater. If the monomials are equal when considering only the first block of variables, then the 
ordering specified by the second number in ord is applied to the second block of variables, if the corresponding parts of the 
monomials are different, and so on (cf. Example 7 below). Note that in the module case, a "position over term" order and a "term over 
position" order cannot be mixed. 

• The fourth argument mode is a string consisting of letters "N" or "S".

• If the letter "N" is present in mode, leading coefficients in the Janet basis are not normalized to 1.



• If the letter "S" is present in mode, the program uses simplify instead of expand in the normal form procedure. If the polynomials in 
the input L contain nonrational coefficients, more precisely, if the ground field contains algebraic elements over the rationals (RootOf, 
cf. Example 4 below), then simplify is used instead of expand automatically. Note, the program can also work with pure 
transcendental extensions, i. e. algebraically independent parameters. (If the parameters are algebraically dependent, there is always 
the danger of division by zero.)

• Possible left hand sides of the optional equations in opt are the strings "time" and "Groebner".

• If "time"=t is given in opt, then t is expected to be a non-negative integer. In this case, the involutive basis computation is stopped 

after t seconds. If the program was not able to construct the result before t seconds, then a warning is printed (cf. Example 8).

• If "Groebner"=b is given in opt, then b is expected to be a boolean value. If b is true, then only the reduced Groebner basis for the 
module generated by L (w.r.t. the chosen monomial ordering) is returned. The Groebner basis is extracted from the computed Janet 
basis. The default value for b is false.

• The ground field over which involutive bases are computed is the field of rational numbers by default. The characteristic of the 
ground field can be changed by InvolutiveOptions. It is also possible to compute involutive bases of the ring of integers. By means of 
the command InvolutiveOptions one can also choose between three implementations of InvolutiveBasis: "Maple", "C++", and 
"GINV".

• One can specify a right hand side for each generator in order to let InvolutiveBasis perform any operation on both left and right hand 
side. Right hand sides are assigned by an equal sign (cf. Example 2 below), usually they are symbols, but also tuples are possible, for 
instance, if one wants to construct a free resolution. A list P_HOM is constructed that contains all expressions being right hand sides in 
some step of the computation that correspond to zero left hand side. This list is used to find the syzygies among the generators in L, 
see Syzygies.

• For a description of the basic algorithms, see V. P. Gerdt, "Involutive Algorithms for Computing Groebner Bases", in: S. Cojocaru, G. 
Pfister, V. Ufnarovski, "Computational Commutative and Non-Commutative Algebraic Geometry", NATO Science Series, IOS Press, 
2005, pp. 199-225; or V. P. Gerdt, "Involutive Division Technique: Some Generalizations and Optimizations", Journal of 
Mathematical Sciences 108(6), 2002, pp. 1034-1051 (cf. Involutive).

• InvolutiveBasis allows for assigning degrees other than 1 to the variables and also, in the module case, degrees other than 0 to the 
standard basis vectors of the free module. The syntax for this is to change var from [x1, ..., xn] to [x1=d1, ..., xn=dn] respectively to [x1=d1

, ..., xn=dn, 1=e1,  ..., m=em] in the module case. Here di is the degree of xi and ei the degree of the ith standard basis vector [0,...,0,1,0,...0] 

with the 1 in the ith position. The di must be natural numbers, the ei integers. Of course, the Janet basis will in general be different from 
the standard one. Note, to continue with these degrees one has to work with PolWeightedHilbertSeries instead of PolHilbertSeries. For 
examples that deal with leading monomials in the case of non-standard degrees see LeadingMonomial.

Examples:
> with(Involutive):


Example 1:


> var := [x,y,z];

 := var [ ], ,x y z
> L1 := [x+y+z, x*y+y*z+z*x, x*y*z-1];

 := L1 [ ], ,+ +x y z + +xy yz z x −xyz 1
> InvolutiveBasis(L1, var);

[ ], , ,+ +x y z + +y2 yz z2 −z3 1 − +y z3 y
> PolTabVar();

[ ], ,+ +x y z [ ], ,x y z x

[ ], ,+ +y2 yz z2 [ ], ,* y z y2

[ ], ,−z3 1 [ ], ,* * z z3

[ ], ,− +y z3 y [ ], ,* * z z3 y
> InvolutiveBasis(L1, var, 1);

[ ], , ,−z3 1 − +y z3 y + +y2 yz z2 + +x y z


Example 2:  A sample calculation for modules over the polynomial ring Q[x,y]:




> L2a := [[x^2-1, 0], [x*y, x*y], [0, y^2-1]];

 := L2a [ ], ,[ ],−x2 1 0 [ ],xy xy [ ],0 −y2 1
> InvolutiveBasis(L2a, [x,y]);

[ ], , , , ,[ ],0 −y2 1 [ ],xy xy [ ],y2 x2 [ ],−x2 1 0 [ ],−y3 y 0 [ ],0 − +x y2 x
The generators of the submodule can also be specified in matrix form:
> L2b := matrix(3, 2, [[x^2-1, 0], [x*y, x*y], [0, y^2-1]]);

 := L2b













−x2 1 0

xy xy

0 −y2 1
> InvolutiveBasis(L2b, [x,y]);

[ ], , , , ,[ ],0 −y2 1 [ ],xy xy [ ],y2 x2 [ ],−x2 1 0 [ ],−y3 y 0 [ ],0 − +x y2 x
Next we see the last example with right hand sides:
> L2c := [[x^2-1, 0]=a, [x*y, x*y]=b, [0, y^2-1]=c];

 := L2c [ ], ,=[ ],−x2 1 0 a =[ ],xy xy b =[ ],0 −y2 1 c
> InvolutiveBasis(L2c, [x,y], 2);

=[ ],0 −y2 1 c =[ ],0 − +x y2 x xc =[ ],0 −x3 x − + − −xc xy2 a yx2 b yb x3 c =[ ],0 − +x2 y2 x2 x2 c =[ ],y x2 y − +ya xb, , , , ,[

=[ ],xy xy − + + + + +y2 x2 b xy3 a y2 b ( )− −a c yx x2 b yx3 c =[ ],−x2 1 0 a, ]
> Syzygies(L2c, [x,y]);

+ − − + − −b y2 x2 b xy3 a y2 b ( )+c a xy x2 b yx3 c − + + − + + +xb ycx4 b x3 b y2 x3 a y3 x2 ( )− −a c yx2 y2 b x, ,[

+ + − − + +yx2 b y2 x3 c ( )− −a c y2 x yb y3 x2 b y4 xa y3 b]
> L2d := [[x^2-1, 0]=[1,0,0], [x*y, x*y]=[0,1,0], [0, y^2-1]=[0,0,1]];

 := L2d [ ], ,=[ ],−x2 1 0 [ ], ,1 0 0 =[ ],xy xy [ ], ,0 1 0 =[ ],0 −y2 1 [ ], ,0 0 1
> InvolutiveBasis(L2d, [x,y], 2);

=[ ],0 −y2 1 [ ], ,0 0 1 =[ ],0 − +x y2 x [ ], ,0 0 x =[ ],0 −x3 x [ ], ,−y2 x −x2 y y − +x3 x =[ ],0 − +x2 y2 x2 [ ], ,0 0 x2 =[ ],y x2 y [ ], ,−y x 0, , , , ,[

=[ ],xy xy [ ], ,− +xy y3 x − + +y2 x2 y2 x2 −x3 y xy =[ ],−x2 1 0 [ ], ,1 0 0, ]
> Syzygies(L2d, [x,y]);

[

, ,[ ], ,− +y3 x xy − − +y2 x2 y2 x2 1 − +x3 y xy [ ], ,−x2 y3 x2 y − + − +x x3 y2 x3 y2 x − +x2 y x4 y [ ], ,− +y2 x xy4 − − +x2 y y x2 y3 y3 −y2 x3 y2 x

]
Note, these syzygies can be interpreted as a matrix representing a homomorphism of the free module of rank 1 into the free module of 
rank 3, whose cokernel is the module generated by L2d.


Example 3:  Algebraically dependent parameters:


> L3 := [x^2+y^2 - P1, x^2*y^2 - P2, x*y^3-x^3*y - P3];

 := L3 [ ], ,+ −x2 y2 P1 −y2 x2 P2 − −y3 x x3 y P3
> InvolutiveBasis(L3, [x,y]);

[ ]1
> PolZeroSets();

[ ], ,− −P13 P2 4 P22 P1 P32 P1 − −P12 P2 4 P22 P32 − −P3P13 P2 4 P3P22 P1 P33 P1
> map(factor, %);

[ ], ,P1 ( )− −P12 P2 4 P22 P32 − −P12 P2 4 P22 P32 P1P3 ( )− −P12 P2 4 P22 P32

> s := P1^2*P2-4*P2^2-P3^2;

 := s − −P12 P2 4 P22 P32

> expand(subs([P1=x^2+y^2, P2=x^2*y^2, P3=x*y^3-x^3*y], s));

0


Example 4:  The next example deals with nonrational coefficients:


> alias(omega=RootOf(a^2+a+1,a)):
> simplify(omega^2);

− −1 ω
> L4 := [x+omega*y+omega^2*z,x*y+y*z+z*x,x*y*z-1];

 := L4 [ ], ,+ +x ωy ω2 z + +xy yz z x −xyz 1



> InvolutiveBasis(L4, [x,y,z]);







, , ,+ − −x ωy z z ω + + + + +y2 2 yz 2 yz ω z2 2 z2 ω z2 ω2 + + + +

2

3

1

3
ω yz2

1

3
z3

2

3
z3 ω

1

3
( )− +1 ω ( )+ − + −5 z 4 z ω 2 z4 3 y z4 ω

> InvolutiveBasis(L4, [x,y,z], "N");

[ ], , ,+ +x ωy ( )− −1 ω z − + +ωy2 2 yz ( )+1 ω z2 − − − +2 ω 3 yz2 ( )− −1 2 ω z3 − + +3 y ( )− −4 ω 5 z ( )+2 ω z4



Example 5:  Assigning weights ("degrees") to the variables:


> L5 := [x^2-y^3, x^4+y^6];

 := L5 [ ],−x2 y3 +x4 y6

> InvolutiveBasis(L5, [x=3,y=2]);

[ ], ,−x2 y3 y6 xy6

> PolWeightedHilbertSeries([x=3,y=2]);

+ + + + + + + + + + +1 s3 s5 s7 s9 s11 s13 s2 s4 s6 s8 s10



Example 6:  Changing the priority of tuple entries


> L6 := [[x^2,y,0], [x^3,y^2,x-y]];

 := L6 [ ],[ ], ,x2 y 0 [ ], ,x3 y2 −x y
> InvolutiveBasis(L6, [x,y], 2);

[ ],[ ], ,0 − +y2 xy − +x y [ ], ,x2 y 0
> InvolutiveBasis(L6, [x,y,2,3,1], 2);

[ ],[ ], ,−x3 x2 y 0 −x y [ ], ,x2 y 0


Example 7:  Block ordering


> L7 := [x*y-z^3, x*y*z-x^2*y^2];

 := L7 [ ],−xy z3 −xyz y2 x2

> InvolutiveBasis(L7, [x,y,z]);

[ ], , , ,− +xy z3 − +x2 y z3 x − +xyz y2 x2 − +x3 y z3 x2 −z3 x2 y x2 yz
> InvolutiveBasis(L7, [[x,y],[z]], [4,4]);

[ ], ,−z6 z4 −z6 x z4 x −xy z3



Example 8:  Stop computation of involutive basis within a prescribed time bound


> L8 := [seq(a[i]^3-a[i+1]-1, i=1..6),seq(a[i]^2-a[i-1]+1, i=2..3)];

 := L8 [ ], , , , , , ,− −a1

3
a2 1 − −a2

3
a3 1 − −a3

3
a4 1 − −a4

3
a5 1 − −a5

3
a6 1 − −a6

3
a7 1 − +a2

2
a1 1 − +a3

2
a2 1

> InvolutiveBasis(L8, [seq(a[i], i=1..7)], "time"=5):
Warning, computation of involutive basis stopped due to time restriction.

See Also:
PolTabVar, LeadingMonomial, JanetGraph, InvolutiveBasisFast, InvolutiveBasisGINV, GroebnerBasis, InvolutiveOptions, PolInvReduce, 
FactorModuleBasis, PolHilbertSeries, PolWeightedHilbertSeries, Syzygies, SyzygyModule, PolCartanCharacter, Has.




Involutive[InvolutiveBasisFast] -  return the (unique) minimal Janet basis of a submodule of a free module over a 

polynomial ring (C++ version)

Calling Sequence:
     InvolutiveBasisFast(L,var,ord,mode,opt)

Parameters:
 L    - list (or matrix) of generators of the submodule
 var  - list of variables (of the polynomial ring)
 ord  - (optional) change of monomial ordering
 mode - (optional) string specifying options for the computation
 opt  - (optional) sequence of equations specifying options for the computation

Description:

• InvolutiveBasisFast invokes the C++ version of the command InvolutiveBasis. Up to now, only the algorithm for the degree reverse 
lexicographical ordering (i.e. ord is 2 or 4) is implemented in C++. If InvolutiveBasisFast is called choosing a different monomial 
ordering, then InvolutiveBasis is applied internally to the same data.

• The parameters L, var, ord, and mode have the same meaning as in InvolutiveBasis.

• The advantage of this command is clearly the enormous speed up. (Note, you cannot interrupt this command from within Maple; you 
have to kill the process "JB" instead.)

• The output of the C++ program is read into the current Maple session. To continue with commands that expect a previous run of 
InvolutiveBasis (like PolTabVar, FactorModuleBasis, PolHilbertSeries, etc.) the internal data structure for the involutive basis has to 
be set up by the command AssertInvBasis (cf. example below).

• Possible left hand sides of the optional equations opt are the strings "char", "time", "Name", "denom", and "donotread".

• If an equation "char"=c is provided in opt by the user, then c is expected to be zero or a prime number. In this case, the involutive 

basis is computed in characteristic c (cf. Example 2). The purpose of this option is to compute just one involutive basis in 
characteristic c. If further commands like PolMinPoly shall be applied afterwards, the characteristic of the ground field must be 
changed by using the command InvolutiveOptions.

• If "time"=t is given in opt, then t is expected to be a non-negative integer. In this case, the involutive basis computation is stopped 

after t seconds. If the program was not able to construct the result before t seconds, then a warning is printed (cf. Example 3).

• The right hand side of an equation "Name"=s is expected to be a string. InvolutiveBasisFast appends s to the default name for the 
temporary file to which the input for the external program JB is written.

• The right hand side of an equation "denom"=b is expected to be either true or false. The default value is false. If b equals true, then the 
C++ program collects all coefficients by which it divides during the computation of the involutive basis (these arise either as contents 
of polynomials treated by the algorithm or as leading coefficients in the result before normalizing) together with the coefficients that 
occur in some denominator of the input L. After the computation is finished and the result is read into Maple, this list of denominators 
can be obtained via PolZeroSets. See also Example 4 below.

• The right hand side of an equation "donotread"=b is expected to be a boolean value. If b equals true, then InvolutiveBasisFast does not 
read the result produced by the C++ program and does not return a result.

• Using the option "C++" of InvolutiveOptions, the command InvolutiveBasis is replaced by InvolutiveBasisFast (i.e. the former 
becomes a synonym for the latter) for the current Maple session (which has the corresponding effect on all Maple procedures that call 
InvolutiveBasis).

Examples:
> with(Involutive):


Example 1:




Example 1:

> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+y+z, x*y+y*z+z*x, x*y*z-1];

 := L [ ], ,+ +x y z + +xy yz z x −xyz 1
> IB := InvolutiveBasisFast(L, var);

 := IB [ ], , ,+ +x y z + +y2 yz z2 −z3 1 −yz3 y
> AssertInvBasis(IB, var);

[ ], , ,+ +x y z + +y2 yz z2 −z3 1 −yz3 y
> PolTabVar();

[ ], ,+ +x y z [ ], ,x y z x

[ ], ,+ +y2 yz z2 [ ], ,* y z y2

[ ], ,−z3 1 [ ], ,* * z z3

[ ], ,−yz3 y [ ], ,* * z yz3

> FactorModuleBasis(var);

[ ], , , , ,1 z y z2 yz yz2

> PolHilbertSeries(lambda);

+ + +1 2 λ 2 λ2 λ3



Example 2:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+2*y+3*z, x*y+2*y*z+3*z*x, x*y*z-1];

 := L [ ], ,+ +x 2 y 3 z + +xy 2 yz 3 z x −xyz 1
> InvolutiveBasisFast(L, var, "char"=7);

[ ], , ,+ +x 2 y 3 z +y2 z2 + +yz2 4 z3 5 + +z4 3 y 2 z


Example 3:


> var := [seq(a[i], i=1..12)];

 := var [ ], , , , , , , , , , ,a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

> L := [seq(a[i]^5-a[i+1]^4, i=1..nops(var)-1),seq(a[i]^3-a[i-1]^2, i=2..nops(var))];

L −a1

5
a2

4
−a2

5
a3

4
−a3

5
a4

4
−a4

5
a5

4
−a5

5
a6

4
−a6

5
a7

4
−a7

5
a8

4
−a8

5
a9

4
−a9

5
a10

4
−a10

5
a11

4
−a11

5
a12

4
−a2

3
a1

2
, , , , , , , , , , , ,[ := 

−a3

3
a2

2
−a4

3
a3

2
−a5

3
a4

2
−a6

3
a5

2
−a7

3
a6

2
−a8

3
a7

2
−a9

3
a8

2
−a10

3
a9

2
−a11

3
a10

2
−a12

3
a11

2
, , , , , , , , , ]

> InvolutiveBasisFast(L, var, "time"=1):
Warning, computation of involutive basis stopped due to time restriction.


> InvolutiveBasisFast(L, var):
Warning, resulting involutive basis is big; reading it may take a while...


> nops(FactorModuleBasis(var, "L"));

8199


Example 4:


> var := [x,y];

 := var [ ],x y
> L := [3*x*y-5, x-5*y];

 := L [ ],−3 xy 5 −x 5 y
> InvolutiveBasisFast(L, var, "denom"=true);







,−x 5 y −y2

1

3
> PolZeroSets();

[ ],5 3
> InvolutiveBasisFast(L, var, "N", "denom"=true);

[ ],−x 5 y −3 y2 1
> PolZeroSets();



[ ]5

See Also:
InvolutiveBasis, AssertInvBasis, InvolutiveBasisGINV, InvolutiveOptions, PolTabVar, FactorModuleBasis, PolInvReduce, 
PolInvReduceFast, Syzygies, SyzygyModule, SyzygyModuleFast, PolHilbertSeries.




Involutive[InvolutiveBasisGINV] -  Python/C++ version of InvolutiveBasis

Calling Sequence:
     InvolutiveBasisGINV(L,var,ord,mode,opt)

Parameters:
 L    - list (or matrix) of generators of the submodule
 var  - list of variables (of the polynomial ring)
 ord  - (optional) change of monomial ordering
 mode - (optional) string specifying options for the computation
 opt  - (optional) sequence of equations specifying options for the computation

Description:

• InvolutiveBasisGINV invokes the version of the command InvolutiveBasis which uses the C++ module ginv for Python to perform 
the involutive basis computation.

• The parameters L, var, ord, and mode have the same meaning as in InvolutiveBasis.

• The advantage of this command is clearly the enormous speed up. (Note, you cannot interrupt this command from within Maple; you 
have to kill the corresponding process "python" instead.)

• The output of python is read into the current Maple session. To continue with commands that expect a previous run of InvolutiveBasis 
(like PolTabVar, FactorModuleBasis, PolHilbertSeries, etc.) the internal data structure for the involutive basis has to be set up by the 
command AssertInvBasis (cf. example below).

• Possible left hand sides of the optional equations opt are the strings "char", "algext", "transext", "time", "Name", "quiet", "denom", 
"donotread".

• If an equation "char"=c is provided in opt by the user, then c is expected to be zero or a prime number. In this case, the involutive 

basis is computed in characteristic c (cf. Example 2). The purpose of this option is to compute just one involutive basis in 
characteristic c. If further commands like PolMinPoly shall be applied afterwards, the characteristic of the ground field must be 
changed by using the command InvolutiveOptions.

• The right hand side of an equation "algext"=p in opt is expected to be a univariate polynomial in an indeterminate ζ which does not 

occur in var. The coefficients of p must be algebraic over the ground field in the sense that they are rational expressions in RootOf 

and indeterminates ξ used in previously given right hand sides of other equations "algext"=q in opt. This extends the ground field 

(defined so far) by ζ which has minimal polynomial p, i.e. every occurrence of ζ in L is subject to the relation =p 0 (cf. Example 3).

• The right hand side of an equation "transext"=z in opt is expected to be a name for an indeterminate. This extends the ground field 

(defined so far) by a new transcendental element z.

• If "time"=t is given in opt, then t is expected to be a non-negative integer. In this case, the involutive basis computation is stopped 

after t seconds. If the program was not able to construct the result before t seconds, then a warning is printed (cf. Example 4).

• The right hand side of an equation "Name"=s is expected to be a string. InvolutiveBasisGINV appends s to the default name for the 
temporary file to which the input for ginv is written.

• As right hand side of an equation "quiet"=b in opt, a boolean value b is expected. The default value is false. If b equals true, then no 
intermediate output is produced on the screen by the Python/C++ program.

• The right hand side of an equation "denom"=b is expected to be either true or false. The default value is false. If b equals true, then the 
Python/C++ program collects all coefficients by which it divides during the computation of the involutive basis (these arise either as 
contents of polynomials treated by the algorithm or as leading coefficients in the result before normalizing) together with the 
coefficients that occur in some denominator of the input L. After the computation is finished and the result is read into Maple, this list 
of denominators can be obtained via PolZeroSets. See also Example 5 below.

• The right hand side of an equation "donotread"=b is expected to be a boolean value. If b equals true, then InvolutiveBasisGINV does 



not read the result produced by the Python/C++ program and does not return a result.

• Using the option "GINV" of InvolutiveOptions, the command InvolutiveBasis is replaced by InvolutiveBasisGINV for the current 
Maple session (which has the corresponding effect on all Maple procedures that call InvolutiveBasis).

• For more information about ginv, cf. http://invo.jinr.ru and http://wwwb.math.rwth-aachen.de/Janet.

Examples:
> with(Involutive):


Example 1:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+y+z, x*y+y*z+z*x, x*y*z-1];

 := L [ ], ,+ +x y z + +xy yz z x −xyz 1
> IB := InvolutiveBasisGINV(L, var);

 := IB [ ], , ,+ +x y z + +y2 yz z2 −z3 1 −yz3 y
> AssertInvBasis(IB, var);

[ ], , ,+ +x y z + +y2 yz z2 −z3 1 −yz3 y
> PolTabVar();

[ ], ,+ +x y z [ ], ,x y z x

[ ], ,+ +y2 yz z2 [ ], ,* y z y2

[ ], ,−z3 1 [ ], ,* * z z3

[ ], ,−yz3 y [ ], ,* * z yz3

> FactorModuleBasis(var);

[ ], , , , ,1 z y z2 yz yz2

> PolHilbertSeries(lambda);

+ + +1 2 λ 2 λ2 λ3



Example 2:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+2*y+3*z, x*y+2*y*z+3*z*x, x*y*z-1];

 := L [ ], ,+ +x 2 y 3 z + +xy 2 yz 3 z x −xyz 1
> InvolutiveBasisGINV(L, var, "char"=7);

[ ], , ,+ +x 2 y 3 z +y2 z2 + +yz2 4 z3 5 + +z4 3 y 2 z


Example 3:


> var := [x,y];

 := var [ ],x y
> alias(omega=RootOf(Z^2+Z+1));

ω
> simplify(omega^3);

1
> factor(zeta^3+omega*zeta+1, omega);

+ +ζ 3 ω ζ 1
> minpoly1 := zeta^3+omega*zeta+1;

 := minpoly1 + +ζ 3 ω ζ 1
> L := [x^2-y^2, y^3-zeta*x^3];

 := L [ ],−x2 y2 −y3 ζ x3

> InvolutiveBasisGINV(L, var, "algext"=minpoly1);

[ ], ,−x2 y2 +xy2 ( )+ζ 2 ω y3 y4

> J := InvolutiveBasisGINV(AddRhs(L), var, "algext"=minpoly1);



J =−x2 y2 [ ],1 0 =+xy2 ( )+ζ 2 ω y3 [ ],−x +ζ 2 ω y4


=, ,



 := 
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> simplify(rem(expand(rhs(J[3])[1] * L[1] + rhs(J[3])[2] * L[2]), minpoly1, zeta));

y4



Example 4:


> var := [seq(a[i], i=1..10)];

 := var [ ], , , , , , , , ,a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

> L := [seq(a[i]^5-a[i+1]^4, i=1..9),seq(a[i]^3-a[i-1]^2, i=2..10)];

L −a1
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> J := InvolutiveBasisGINV(L, var, "time"=1):
Warning, computation of involutive basis stopped due to time restriction.


> J := InvolutiveBasisGINV(L, var):
> AssertInvBasis(J, var):
> nops(FactorModuleBasis(var));

2055


Example 5:


> var := [x,y];

 := var [ ],x y
> L := [a*x*y-a, x-b*y];

 := L [ ],−a xy a −x b y
> InvolutiveBasisGINV(L, var, "denom"=true);







,−x b y −y2

1

b
> PolZeroSets();

[ ],a b
> InvolutiveBasisGINV(L, var, "N", "denom"=true);

[ ],−x b y −b y2 1
> PolZeroSets();

[ ]a

See Also:
InvolutiveBasis, AssertInvBasis, InvolutiveBasisFast, GroebnerBasisGINV, InvolutiveOptions, PolTabVar, FactorModuleBasis, 
PolInvReduce, PolInvReduceGINV, Syzygies, SyzygyModule, PolHilbertSeries.




Involutive[InvolutiveOptions] -  set up the options for the current session of Involutive

Calling Sequence:
     InvolutiveOptions(s,v)

Parameters:
 s    -   string specifying the option to be affected
 v    -   (optional) the option’s new value

Description:

• InvolutiveOptions sets up the options for the current session of Involutive. The string s specifies the option which is to be modified or 
whose value is to be returned. Possible values for s are the following:


      "char"             "rational"         "AbsolutelySmallestRemainder"


      "C++"              "GINV"             "Maple"         

      "matrix"           "JanetLike"        "criteria" 

      "InvBasis"         "InvReduce"        "SyzygyModule"  
      "GBasis"

  

• If the first parameter s is one of the strings "C++", "GINV", or "Maple", then InvolutiveOptions has no return value. For all other 
possible values of the first parameter s, InvolutiveOptions returns the current value of the option specified by s. In these latter cases, if 
no second parameter v is provided, the value of the option addressed by s is not changed.

• If s equals the string "char", then a second parameter v is expected to be zero or a prime number. Subsequent computations of the 
Involutive package are done in characteristic v then. The return value of InvolutiveOptions is the characteristic of the ground field 
used by the Involutive package so far.

• If s equals the string "rational", then v is expected to be either true or false. The default setting is true, which means that involutive 
bases are computed over (an extension field of) the rational numbers or fields of non-zero characteristic, if the option "char" was 
modified. If the option "rational" is set to false, then involutive bases are computed over the integers. Note that in this case the value 
of the option "char" is automatically set to zero and that "rational" is set to true again if a non-zero value is assigned to the option 
"char" afterwards. The return value of InvolutiveOptions in this case is the former value of the option "rational".

• If s equals the string "AbsolutelySmallestRemainder", then v is expected to be either true or false. This option is relevant only if the 
option "rational" has been set to false, i.e. if involutive bases are computed over the integers. In that case the option 
"AbsolutelySmallestRemainder" determines how ambiguity of normal forms is resolved: If v equals false (which is the default), then a 

term which is reduced modulo another polynomial with positive leading coefficient c, will have a coefficient between 0 and c-1. If v 

equals true, then the resulting coefficient will be between floor(-c/2)+1 and floor(c/2), i.e. it will be an absolutely smallest remainder 
modulo c. The return value of InvolutiveOptions in this case is the former value of the option "AbsolutelySmallestRemainder".

• The keywords "C++", "GINV", and "Maple" select the method for subsequent computations of involutive bases, involutive 
reductions, syzygy modules and Groebner bases. The default setting is "Maple". In this case all computations are done using 
procedures written in Maple. If "C++" methods are chosen, then the command InvolutiveBasis becomes a synonym for 
InvolutiveBasisFast, PolInvReduce a synonym for PolInvReduceFast, SyzygyModule a synonym for SyzygyModuleFast, and 
GroebnerBasis a synonym for GroebnerBasisFast, i.e. all these basic commands invoke the external C++ routines. Note that in this 
case InvolutiveBasis and SyzygyModule call AssertInvBasis with the output of the C++ routine as parameter which sets up the internal 
data for the current Involutive session. Hence, from the user’s point of view, there is no difference in using the "Maple" or the "C++" 
methods of InvolutiveBasis, PolInvReduce, SyzygyModule, and GroebnerBasis when selecting the methods by means of 
InvolutiveOptions. The same remarks hold for the keyword "GINV". In that case InvolutiveBasis becomes a synonym for 
InvolutiveBasisGINV, PolInvReduce a synonym for PolInvReduceGINV, SyzygyModule a synonym for SyzygyModuleGINV, and 
GroebnerBasis a synonym for GroebnerBasisGINV. Note also that these options affect many commands of the Involutive package 
which call these basic procedures (e. g. PolResolution) and that the "C++" and "GINV" methods are much faster than the "Maple" 
routines for big problems. There is no return value of InvolutiveOptions if s is either "C++", "GINV", or "Maple".



• If the parameter s is the string "matrix", then v is expected to be either the symbol ’matrix’ or the symbol ’Matrix’. This option 
determines the type for matrices returned by the procedures of the Involutive package (e.g. PolResolution, PolRepres, Repres are 
affected by this option; however, the result of PolLeftInverse, PolRightInverse and PolCoeff is of the same type as their input). This 
option is meaningful only for Maple versions that provide both the linalg and the LinearAlgebra package. The default value for this 
option is the symbol ’Matrix’.

• If s equals the string "JanetLike", then v is expected to be either true or false. If v is true then the command InvolutiveBasis returns a 
Janet-like Groebner basis instead of an involutive basis. The default setting is false. The return value of InvolutiveOptions is the 
former value of the option "JanetLike".

• If s equals the string "criteria", then v is expected to be a list consisting of some of the integers 1, 2, 3, 4 (or being the empty list). If 
the integer i is present in v, then involutive basis computations during the current session of Involutive will apply the i-th involutive 
criterion to avoid unnecessary reductions. For more details about the involutive criteria, see V. P. Gerdt, D. A. Yanovich, 
"Experimental Analysis of Involutive Criteria", in: A. Dolzmann, A. Seidl, T. Sturm (eds.), Algorithmic Algebra and Logic, BOD 
Norderstedt, pp. 105-109.

• By means of the keywords "InvBasis", "InvReduce", "SyzygyModule", and "GBasis" the methods for subsequent computations of 
involutive bases, involutive reductions, syzygy modules, and Groebner bases are chosen. This is a more advanced way of setting the 
options described above for "C++", "GINV", and "Maple". More precisely, if s is the string "InvBasis" then v is expected to be a 
procedure. Then every subsequent call of InvolutiveBasis invokes v instead of the default method for involutive basis computation. 
Similarly, if s is "InvReduce" (resp. "SyzygyModule" resp. "GBasis") then v is also expected to be of type procedure and every call of 
PolInvReduce (resp. SyzygyModule resp. GroebnerBasis) invokes v instead of the default method. In each case the return value of 
InvolutiveOptions is the procedure used so far by the Involutive package for the respective purpose.

Examples:
> with(Involutive):


Example 1:  Changing the characteristic of the ground field


> L := [x-2*y, z-y];

 := L [ ],−x 2 y −z y
> InvolutiveBasis(L, [x,y,z]);

[ ],− +z y −x 2 z
> InvolutiveOptions("char", 2);

0
> InvolutiveBasis(L, [x,y,z]);

[ ],+z y x
> InvolutiveOptions("char", 0);

2
> InvolutiveBasis(L, [x,y,z]);

[ ],− +z y −x 2 z
> InvolutiveOptions("char");

0


Example 2:  Computing involutive bases over the integers


> L := [3*x, x^2-x];

 := L [ ],3 x −x2 x
> InvolutiveOptions("rational", false);

true
> InvolutiveBasis(L, [x]);

[ ],3 x +x2 2 x
> PolTabVar();

[ ], ,3 x [ ]* 3 x

[ ], ,+x2 2 x [ ]x x2

> InvolutiveOptions("AbsolutelySmallestRemainder", true);

false
> InvolutiveBasis(L, [x]);



[ ],3 x −x2 x
> PolTabVar();

[ ], ,3 x [ ]* 3 x

[ ], ,−x2 x [ ]x x2

> InvolutiveOptions("rational", true);

false
> InvolutiveBasis(L, [x]);

[ ]x


Example 3:  Selecting fast involutive basis computation method


> L := [seq(a[i]^3-a[i+1]-1, i=1..6),seq(a[i]^2-a[i-1]+1, i=2..3)];

 := L [ ], , , , , , ,− −a1

3
a2 1 − −a2

3
a3 1 − −a3

3
a4 1 − −a4

3
a5 1 − −a5

3
a6 1 − −a6

3
a7 1 − +a2

2
a1 1 − +a3

2
a2 1

> InvolutiveOptions("C++");
> InvolutiveBasis(L, [seq(a[i], i=1..7)]);

[ ]1
> InvolutiveOptions("GINV");
> InvolutiveBasis(L, [seq(a[i], i=1..7)]);

[ ]1
> InvolutiveOptions("Maple");
> InvolutiveBasis(L, [seq(a[i], i=1..7)]);

[ ]1


Example 4:  Changing the matrix type of results of procedures


> var := [x,y];

 := var [ ],x y
> L := [x+y, x*y];

 := L [ ],+x y xy
> PolResolution(L, var);











,[ ]−y2 +x y












+x y

y2

> whattype(%[1]);

array
> InvolutiveOptions("matrix", Matrix);

matrix
> PolResolution(L, var);











,[ ]−y2 +x y












+x y

y2

> whattype(%[1]);

Matrix
> InvolutiveOptions("matrix", matrix);

Matrix


Example 5:  Computing Janet-like Groebner bases


(see V. P. Gerdt, Y. A. Blinkov, Janet-like Groebner Bases, Proceedings of Computer Algebra in Scientific Computing, Springer, 
2005, pp. 184-195)
> L := [x^7-y^2*z, x^4*w-y^3, x^3*y-z*w];

 := L [ ], ,−x7 y2 z −x4 w y3 −x3 y z w
> InvolutiveOptions("JanetLike", true);

false
> InvolutiveBasis(L, [x,y,z,w]);

[ ], , , ,− +z w 2 x y4 −x3 y z w −x4 w y3 −yx4 z w x −x7 y2 z
> InvolutiveOptions("JanetLike", false);

true



> InvolutiveBasis(L, [x,y,z,w]);

− +z w 2 x y4 −x3 y z w −x4 w y3 − +z w 2 x2 y4 x −yx4 z w x −w x5 y3 x − +z w 2 x3 y4 x2 −yx5 z w x2 −w x6 y3 x2 −yx6 z w x3, , , , , , , , , ,[

−x7 y2 z]
> GroebnerBasis(L, [x,y,z,w]);

[ ], , ,− +z w 2 x y4 −x3 y z w −x4 w y3 −x7 y2 z

See Also:
InvolutiveBasis, Stats, InvolutiveBasisFast, InvolutiveBasisGINV, PolInvReduce, PolInvReduceFast, PolInvReduceGINV, PolTabVar, 
PolHilbertSeries, SyzygyModule, SyzygyModuleFast, SyzygyModuleGINV, GroebnerBasis, GroebnerBasisFast, GroebnerBasisGINV.




Involutive[InvolutivePreprocess] -  find possibilities to solve relations of a finitely presented module over a 

polynomial ring for some variables

Calling Sequence:
     InvolutivePreprocess(L,var,mode)

Parameters:
 L     - matrix of polynomials in var or list of (lists of the same length of) polynomials in var
 var   - list of variables (of the polynomial ring)
 mode  - (optional) string specifying options for the computation

Description:

• InvolutivePreprocess searches through the list L in order to find (tuples of) polynomials in L which can be solved (linearly) for some 
of the variables in var. If possible, it returns a list of equations that are solved for some variable in terms of the other ones. It is 
convenient to apply InvolutivePreprocess to L prior to the run of InvolutiveBasis and to possibly use the result of 
InvolutivePreprocess to eliminate some of the variables in var by substitution in order to reduce the complexity of the involutive 
basis computation. This is automatized by the command Substitute.

• For each generator p of the submodule in L, InvolutivePreprocess checks whether a variable in var occurs only linearly in (some 

component of) p with coefficient independent of the other variables. If this is the case, =p 0 is solved for this variable, the resulting 
equation becomes an entry of the list returned by InvolutivePreprocess, and the next generator is examined.

• The entries of L are polynomials in case of an ideal, i. e. a submodule of the free module of rank one, or lists of polynomials of length 

m, representing elements of the free module of m-tuples over the polynomial ring. If L is a matrix, then the generators are extracted 
from the rows of L.

• The parameter var is a list specifying the variables of the polynomial ring.

• If the letter "A" is present in mode, InvolutivePreprocess finds all possibilities to solve (tuples of) polynomials in L for variables in 
var, i.e. the search process described above is not stopped when finding a relation for some variable (in some component), but the 
search is extended to all variables (and all components).

• If the letter "S" is present in mode, the program applies evala and simplify to the result of solve. If the polynomials in the input L 
contain nonrational coefficients, more precisely, if the ground field contains algebraic elements over the rationals (RootOf), then evala 
and simplify are applied to the result of solve automatically by InvolutivePreprocess.

• The result of InvolutivePreprocess is a (possibly empty) list of equations whose left hand sides are variables in var in the ideal case 
or tuples whose only non-zero entry is a variable in var. These equations satisfy that the difference of their left and right hand sides 
are in the submodule spanned by L.

• In addition, for each variable in var which does not occur in the generators of the submodule given in L, InvolutivePreprocess gives a 
warning.

Examples:
> with(Involutive):


Example 1:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x*y, 3*x-y^2-z, y^2-z^2];

 := L [ ], ,xy − −3 x y2 z −y2 z2

> InvolutivePreprocess(L, var);







=x +

1

3
y2

1

3
z



> InvolutivePreprocess(L, var, "A");







,=x +

1

3
y2

1

3
z =z −3 x y2

> InvolutivePreprocess(L, [x,y,z,u]);
Warning, variable u does not occur in given polynomials.







=x +

1

3
y2

1

3
z



Example 2:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [[0,x^3,x-z,y^2-z^2-x],[0,0,x^2-y+z^7*x+1,1],[x^2,y^3,x+x*y,0]];

 := L [ ], ,[ ], , ,0 x3 −x z − −y2 z2 x [ ], , ,0 0 − + +x2 y z7 x 1 1 [ ], , ,x2 y3 +x xy 0
> InvolutivePreprocess(L, var);

[ ],=[ ], , ,0 0 x 0 [ ], , ,0 x3 z − −y2 z2 x =[ ], , ,0 0 y 0 [ ], , ,0 0 + +x2 z7 x 1 1
> InvolutivePreprocess(L, var, "A");

[ ], , ,=[ ], , ,0 0 x 0 [ ], , ,0 x3 z − −y2 z2 x =[ ], , ,0 0 z 0 [ ], , ,0 x3 x − −y2 z2 x =[ ], , ,0 0 0 x [ ], , ,0 x3 −x z −y2 z2 =[ ], , ,0 0 y 0 [ ], , ,0 0 + +x2 z7 x 1 1


Example 3:


> var := [x,y,z];

 := var [ ], ,x y z
> InvolutiveOptions("char", 2);

0
> L := [x*y, 3*x-y^2*z^2, y^2-z^2];

 := L [ ], ,xy −3 x y2 z2 −y2 z2

> InvolutivePreprocess(L, var);

[ ]=x y2 z2

> InvolutiveOptions("char", 3);

2
> L := [x*y, 3*x-y^2*z^2, y^2-z^2];

 := L [ ], ,xy −3 x y2 z2 −y2 z2

> InvolutivePreprocess(L, var);

[ ]

See Also:
InvolutiveBasis, Substitute, InvolutiveOptions, PolTabVar, PolInvReduce, PolHilbertSeries, SyzygyModule, GroebnerBasis.




Involutive[ItJanet] -  perform iterated Janet division on a polynomial

Calling Sequence:
     ItJanet(p,J,var,c)

Parameters:
 p     -   polynomial
 J     -   Janet basis with right hand sides
 var   -   list of variables (of the polynomial ring)
 c     -   list of equations containing Janet normal forms modulo J

Description:

• ItJanet performs iterated Janet division on the polynomial p. This method can be used when algebraically independent polynomials p1, 

..., pr in the variables var are given such that the factor module of the polynomial ring in the indeterminates var modulo the ideal 

generated by p1, ..., pr is a free module over the polynomial ring P generated by the p1, ..., pr. Another requirement for the applicability 

of ItJanet is that a Janet basis J of the ideal generated by p1, ..., pr is computed with right hand sides P1, ..., Pr for p1, ..., pr resp., where 

the Pi are unassigned variables. In order to guarantee convergence of ItJanet, the right hand sides of this Janet basis J must have 
smaller degree in the variables var than the corresponding left hand sides. Then by means of ItJanet one can express any given 

element p of P as polynomial in P1, ..., Pr.

• Moreover, as fourth parameter c a list of equations is accepted that contains the Janet normal forms with right hand sides modulo J of 

a basis of the polynomial ring R in the variables var as module over P. If this basis consists of the polynomials q1, ..., qs, the list c can 

be constructed by applying PolInvReduce to qi=Qi for i=1, ..., s, where Q1, ..., Qs are unassigned variables. Then ItJanet expresses any 

element p of R as linear combination of the Qi with coefficients that are polynomials in the Pj.

• ItJanet applies PolInvReduce to p=0 (modulo the Janet basis J) and reduces the result modulo the vector space generated by the left 
hand sides of c by Gaussian elimination and taking the corresponding linear combinations on the right hand side. In this way the 

unassigned variables Pi, Qj are gathered on the right hand side. Let the result be r=q. Then ItJanet applies this step of the algorithm 

again to −r q. This process is iterated until the degree of −r q in the variables var is zero.

Examples:
> with(Involutive):


Example 1:


> var := [x,y]:
> p1 := x^2+y^2; p2 := x+y^3;

 := p1 +x2 y2

 := p2 +x y3

> J := InvolutiveBasis([p1=P1, p2=P2], var):
> PolTabVar();

[ ], ,=+x2 y2 P1 [ ],x y x2

[ ], ,=+x y3 P2 [ ],* y y3

[ ], ,=−y3 x y2 −P2x P1 [ ],* y y3 x
> ItJanet(p1*p2^2, J, var);

P1P22

> ItJanet(p1^3+p2, J, var);

+P2 P13



Example 2:  Invariant ring of C3 x C3


> with(Invariant):
> var := [w,x,y,z]:



> t1 := [w=w,x=x,y=-y-z,z=y]; t2 := [w=-w-x,x=w,y=y,z=z];

 := t1 [ ], , ,=w w =x x =y − −y z =z y

 := t2 [ ], , ,=w − −w x =x w =y y =z z
> r := a->Reynolds(a, [t1,t2], 9, 10):
> p1 := y^2+y*z+z^2; p2 := w^2+w*x+x^2;

p3 := -y^2*z-y*z^2; p4 := -w^2*x-w*x^2;

 := p1 + +y2 yz z2

 := p2 + +w 2 w x x2

 := p3 − −y2 z yz2

 := p4 − −w 2 x w x2

> J := InvolutiveBasis([p1=P1, p2=P2, p3=P3, p4=P4], var):
> S := SecInvar(r, 9, J, var, Q);

S [ ], , ,1 − +3 yz2 y3 z3 − +3 w x2 w 3 x3 − − − − + + + +3 yz2 x3 3 z2 yw 3 3 y3 x2 w y3 x3 w 3 z3 x3 z3 3 z3 x2 w y3 w 3 9 z2 yx2 w [,[ := 

=1 Q1 =3 yz2 − + +P1z P1y Q2 =3 w x2 − + +P2x P2w Q3, , ,

=9 z2 yx2 w − + − + − + + − +P2z3 x P2z3 w 3 P2xz2 y 3 P2z2 yw 3 P1z x2 w 3 P1x2 w y P2xy3 P2y3 w Q4]]
> q2 := S[1,2]; q3 := S[1,3]; q4 := S[1,4];

 := q2 − +3 yz2 y3 z3

 := q3 − +3 w x2 w 3 x3

 := q4 − − − − + + + +3 yz2 x3 3 z2 yw 3 3 y3 x2 w y3 x3 w 3 z3 x3 z3 3 z3 x2 w y3 w 3 9 z2 yx2 w
> c := S[2]:
> ItJanet(p1*p2, J, var, c);

P1P2
> ItJanet(p3*q3+p1^2*q4, J, var, c);

+P12 Q4 P3Q3
> ItJanet(q3^2, J, var, c);

− − +9 P42 3 P4Q3 P23

See Also:
InvolutiveBasis, PolTabVar, PolInvReduce, Reynolds, PrimInvar, SecInvar.




Involutive[JanetGraph] -  return the Janet graph which corresponds to the Janet basis

Calling Sequence:
     JanetGraph(B,var)

Parameters:
 B    -   (optional) Janet basis
 var  -   list of variables (of the polynomial ring)

Description:

• Associated with every Janet basis is a Janet graph which is the labeled directed graph whose vertices are the elements of the Janet 
basis and whose edge set is given as follows: For each element v of the Janet basis and each of its non-multiplicative variables x there 
is an edge from v to the unique involutive divisor of xv in the Janet basis. This edge is labeled by x. The Janet graph contains the same 
information as the corresponding Janet basis (cf. PolTabVar).

• The command JanetGraph returns the Janet graph which corresponds to the Janet basis B. If B is not given, JanetGraph works on the 
Janet basis which has been computed by the last call of InvolutiveBasis. The graph is returned as the list of its labeled edges, where 
each edge is represented as a triple [ ], ,v x w , where v is an element of the Janet basis, x is a non-multiplicative variable of v, and w is the 
involutive divisor of xv in the Janet basis. The order of the edges in the result is the same as the order of the v’s in the Janet basis.

• For more information about the Janet graph, see W. Plesken, D. Robertz, "Janet’s approach to presentations and resolutions for 
polynomials and linear pdes", Archiv der Mathematik, 84(1), 2005, 22-37.

Examples:
> with(Involutive):
> var := [x3,x2,x1];

 := var [ ], ,x3 x2 x1
> L := [x2^2*x3, x1^2*x3^3];

 := L [ ],x22 x3 x12 x33

> J := InvolutiveBasis(L, var);

 := J [ ], , , ,x22 x3 x32 x22 x12 x33 x33 x22 x2 x12 x33

> PolTabVar();

[ ], ,x22 x3 [ ], ,* x2 x1 x22 x3

[ ], ,x32 x22 [ ], ,* x2 x1 x32 x22

[ ], ,x12 x33 [ ], ,x3 * x1 x12 x33

[ ], ,x33 x22 [ ], ,x3 x2 x1 x33 x22

[ ], ,x2 x12 x33 [ ], ,x3 * x1 x2 x12 x33

> JanetGraph(var);

[ ], , ,[ ], ,x22 x3 x3 x32 x22 [ ], ,x32 x22 x3 x33 x22 [ ], ,x12 x33 x2 x2 x12 x33 [ ], ,x2 x12 x33 x2 x33 x22

See Also:
InvolutiveBasis, FactorModuleBasis, PolTabVar, PolHilbertSeries, PolRepres, PolMinPoly.




Involutive[LeadingMonomial] -  determine leading monomial(s) of a (list of) polynomial(s)

Calling Sequence:
     LeadingMonomial(L,var,ord,mode)

Parameters:
 L     -   list of elements of a free module over a polynomial ring
 var   -   list of variables (of the polynomial ring)
 ord   -   (optional) change of monomial ordering
 mode  -   (optional) string specifying the type of information to be returned

Description:

• LeadingMonomial returns the leading monomial of L with respect to a certain monomial ordering, if L is a polynomial. If L is a list of 
polynomials, LeadingMonomial returns the list of the respective leading monomials. The default monomial ordering is the degree 
reverse lexicographical ordering ("term over position" in the case of tuples). The monomial ordering is determined by the optional 
parameter ord.

• For a description of all possible values of the parameters var and ord see the corresponding explanations in InvolutiveBasis.

• As optional fourth parameter mode a string consisting of letters "C" and "T" is accepted. If mode contains the letter "C", the leading 
monomials are returned with leading coefficients (i. e. leading terms). If mode contains "T", tuples of the same length as the tuples in 
L are returned (length 1 if L consists of polynomials), where the leading monomial is in the same component where it occurs in the 
corresponding element of L and the other components are zero.

Examples:
> with(Involutive):
> var := [x,y,z];

 := var [ ], ,x y z
> L := [3*x*y*z+4*x*z^3, 2*y^2+7*x];

 := L [ ],+3 xyz 4 xz3 +2 y2 7 x
> LeadingMonomial(L, var);

[ ],xz3 y2

> LeadingMonomial(L[1], var);

xz3

> LeadingMonomial(L, var, 1);

[ ],xyz x
> LeadingMonomial(L, var, 1, "C");

[ ],3 xyz 7 x
Examples for elements of the free module of rank 2:
> L := [[x*y*z+x*z^3, y^2], [x^3,y]];

 := L [ ],[ ],+xyz xz3 y2 [ ],x3 y
> LeadingMonomial(L, var);

[ ],xz3 x3

Assign degrees to the variables:
> LeadingMonomial(L, [x=1,y=3,z=1]);

[ ],y2 x3

Use "position over term" ordering:
> LeadingMonomial(L, [x=1,y=3,z=1], 2);

[ ],xyz x3

Change the sequence of priority of the list entries:
> LeadingMonomial(L, [x=1,y=3,z=1,2,1]);

[ ],y2 x3

Return leading monomials in tuples:
> LeadingMonomial(L, [x=1,y=3,z=1,2,1], 4, "T");



[ ],[ ],0 y2 [ ],x3 0
Assign degrees to standard basis vectors:
> LeadingMonomial([[x*y, y]], [x,y,1=0,2=2], 4);

[ ]y

See Also:
InvolutiveBasis, PolTabVar, Has.




Involutive[NoetherNormalization] -  find invertible transformation of the variables which puts given ideal in 

Noether position

Calling Sequence:
     NoetherNormalization(L,var,mode,opt)

Parameters:
  L     -  list of polynomials
  var   -  list of variables of the polynomial ring
  mode  -  (optional) sequence of strings "L" or "P"
  opt   -  (optional) sequence of options to be handed over to involutive basis computation

Description:

• NoetherNormalization constructs a Noether normalization of the ideal generated by the elements of L in the polynomial ring with 
indeterminates var. More precisely, an automorphism of the polynomial ring is determined such that the transformed residue class 
ring is a finite extension of a polynomial ring generated by a certain number of new variables.

• NoetherNormalization returns (as part of its output) a list encoding such an automorphism. This list consists of equations which 
represent a substitution of the variables in var. In each equation, the left hand side is a variable in var, and the right hand side is 
understood as a polynomial in new variables, which is the image of the variable on the left hand side under the automorphism. 
However, to simplify further processing of the output, the new variables again get the names given in var. If d is the Krull dimension 

of the given residue class ring, then the new variables whose names are the last d entries in var form a polynomial ring over which the 
transformed residue class ring is finite.

• If the characteristic of the ground field is changed for the current Involutive session using InvolutiveOptions, then 
NoetherNormalization computes over the same chosen ground field.

• If the characteristic of the ground field is zero, then the images of the variables in var under the constructed automorphism are linear 
combinations of the new variables, i.e. the right hand sides defined above are linear polynomials. In particular, if the given ideal is 
homogeneous, then its image under the constructed automorphism is again homogeneous. In non-zero characteristic, a 
non-homogeneous transformation may be necessary.

• The result of NoetherNormalization is a list of two lists. The second list defines the automorphism described above in terms of 
equations, whose i-th right hand side is the image of the i-th variable in var. This coordinate transformation achieves a Noether 
normalization of the residue class ring modulo the ideal generated by L. The first list in the result is an involutive basis for the 
transformed ideal (the result of InvolutiveBasis) with respect to the degree-reverse lexicographical ordering.

• The implemented method first computes an involutive basis of the given ideal and then compares the number of variables occurring in 
the denominators of the generalized Hilbert series for the complement of the ideal of leading terms (see FactorModuleBasis) with the 
Krull dimension of the residue class ring. As long as the former number is greater than the latter number, a sparse invertible 
transformation of the variables is determined from inspection of the leading terms of the involutive basis such that the difference of 
the corresponding numbers for the involutive basis of the transformed ideal is smaller. This process is iterated, where the given ideal 
is replaced by the transformed ideal, until the difference is zero.

• The string "L" is accepted as an option (see Example 5 below). If it is given in mode, NoetherNormalization ensures that the last d 

variables are algebraically independent modulo the given ideal in the new coordinates, where d is the Krull dimension of the residue 
class ring.

• If the string "P" is given in mode (see Example 6 below), NoetherNormalization determines after the computation of the first 
involutive basis whether the given ideal is principal. In that case it checks whether the unique element in the involutive basis is a 
monic polynomial in some of the variables in var (starting from the first variable). If this is true, then NoetherNormalization 
immediately returns the list consisting of the involutive basis, a list encoding the identity map of the polynomial ring, and a variable in 
var as third entry such that the above generator of the principal ideal is monic as a polynomial in that variable, and it is not monic as 
a polynomial of lower degree in another variable in var. If this test fails, then NoetherNormalization goes on with the process 
outlined above.



• For more information about this method to construct a Noether normalization, see D. Robertz, "Noether normalization guided by 
monomial cone decompositions", Journal of Symbolic Computation, 44(10), 2009, pp. 1359-1373.

Examples:
> with(Involutive):


Example 1:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x*y*z];

 := L [ ]xyz
> InvolutiveBasis(L, var);

[ ]xyz
> FactorModuleBasis(var);

+ +
1

( )−1 y ( )−1 z

x

( )−1 x ( )−1 z

xy

( )−1 x ( )−1 y
> N := NoetherNormalization(L, var);

 := N [ ],[ ]− − +x3 yx2 z x2 xyz [ ], ,=x x =y −y x =z −z x
> AssertInvBasis(N[1], var):
> FactorModuleBasis(var);

+ +
1

( )−1 y ( )−1 z

x

( )−1 y ( )−1 z

x2

( )−1 y ( )−1 z
> InvolutiveBasis(subs(N[2], L), var);

[ ]− − +x3 yx2 z x2 xyz


Example 2:


> var := [z,y,x,w];

 := var [ ], , ,z y x w
> L := [x*y*z, x*z^2, x*y^2, w^2*x^2];

 := L [ ], , ,xyz xz2 xy2 w 2 x2

> InvolutiveBasis(L, var):
> FactorModuleBasis(var);

z2

( )−1 z ( )−1 y ( )−1 w

yz

( )−1 y ( )−1 w

z

−1 w

z x

−1 w

z x2

−1 x

z x2 w

−1 x

y2

( )−1 y ( )−1 w

y

−1 w

xy

−1 w

yx2

−1 x

yx2 w

−1 x

1

−1 w
+ + + + + + + + + + +

x

−1 w

x2

−1 x

x2 w

−1 x
+ + +

> N := NoetherNormalization(L, var);

 := N [ ],[ ], , , , ,−y2 z xy2 −yz2 xyz −z3 xz2 − +z2 w 2 2 w 2 xz w 2 x2 −z w 2 x2 w 2 x3 −yw 2 xz yw 2 x2 [ ], , ,=z z =y y =x −x z =w w
> AssertInvBasis(N[1], var);

[ ], , , , ,−y2 z xy2 −yz2 xyz −z3 xz2 − +z2 w 2 2 w 2 xz w 2 x2 −z w 2 x2 w 2 x3 −yw 2 xz yw 2 x2

> FactorModuleBasis(var);

+ + + + + + + + +
1

( )−1 y ( )−1 x ( )−1 w

z2

−1 x

z2 w

−1 x

z y

−1 w

xyz

−1 x

z yxw

−1 x

z

−1 w

z x

−1 w

z x2

−1 x

z x2 w

−1 x


Example 3:  (involutive basis computations can be switched from Maple to C++)


> InvolutiveOptions("C++"):
> var := [w,x,y,z];

 := var [ ], , ,w x y z
> L := [z*y^2-3*x*w*y^2, 4*x*y*z-7*z^2*w, y^2*z-2*w*z*y*x^2, w^3*x-x^3*y];

 := L [ ], , ,−y2 z 3 xw y2 −4 xyz 7 z2 w −y2 z 2 w z yx2 −w 3 x x3 y
> InvolutiveBasis(L, var):
> FactorModuleBasis(var);



w x

−1 z

x2 w

−1 x
z2 w 2

w 2 xz

−1 x

w 2 xy

−1 x
w 3 z2 w yz2 w y w y2 z

xy

−1 y
w 2 yz w xy w yz w 3 yz w 2 z w y2 w 3 z+ + + + + + + + + + + + + + + +

w 3 y w 2 z3 w 2 y
x3

( )−1 x ( )−1 z

x2 y

−1 y

w 2 x

−1 x

w 2 y2

−1 y

w y3

−1 y

x3 y

−1 x

w 4 z

−1 w

w 4 y

−1 w

w 3 y2

−1 y

x3 y2

−1 x

1

−1 z

y

−1 z
+ + + + + + + + + + + + + + +

y4

−1 y
y2 w 2

w 4

−1 w

z x2 w

−1 x

yx2 w

−1 x
w 3 y3 y2 z

w x2 z2

−1 x

w 4 yz

−1 w

w 4 y2

( )−1 w ( )−1 y
y3 z y2 z2

x

−1 z

w

−1 z
+ + + + + + + + + + + + + + + +

x2

−1 z
+

> N := NoetherNormalization(L, var):
> N[2];

[ ], , ,=w w =x −x w =y −y x =z −z x
> AssertInvBasis(N[1], var):
> FactorModuleBasis(var);

w x

−1 z

x

( )−1 y ( )−1 z

1

( )−1 y ( )−1 z
xw y2 w 2 y2 z w 2 xy w 2 y2 y3 x2 x3 x2 y2

w y

−1 z

w y2

−1 z

x2 y

−1 z

w 2 y

−1 z

w 2 x

−1 z
+ + + + + + + + + + + + + +

w y3

−1 z

w 3 y

−1 z

w 3 x

−1 z

y4 w

−1 z
x3 z

w xy

−1 z

w y5 z

−1 y
z2 x3 y3 x2 z

w 2

−1 z

w 3

−1 z
x2 y2 z

w y5

−1 y
x3 y

w

−1 z

x2

−1 z
+ + + + + + + + + + + + + + + +

> InvolutiveOptions("Maple");


Example 4:  (Noether normalization over a finite ground field sometimes requires a nonlinear transformation)


> InvolutiveOptions("char", 2);

0
> var := [x,y];

 := var [ ],x y
> L := [x*y+y^2];

 := L [ ]+y2 xy
> N := NoetherNormalization(L, var);

 := N [ ],[ ]+ + +x4 x3 xy y2 [ ],=x x =y −y x2

> AssertInvBasis(N[1], var):
> FactorModuleBasis(var);

+ + +
1

−1 y

x

−1 y

x2

−1 y

x3

−1 y
> InvolutiveOptions("char", 0);

2


Example 5:  (ensure that last d variables are algebraically independent modulo the ideal, where d is the Krull dimension)


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x*y^2+2*x^2*y, z^3];

 := L [ ],+xy2 2 x2 y z3

> N := NoetherNormalization(L, var);

 := N [ ],[ ], , ,z3 −x3 xy2 xz3 z3 x2 [ ], ,=x x =y −y x =z z
> AssertInvBasis(N[1], var):
> FactorModuleBasis(var);

+ + + + + + + +
x2

−1 y

z x2

−1 y

x2 z2

−1 y

x

−1 y

z x

−1 y

xz2

−1 y

1

−1 y

z

−1 y

z2

−1 y
> N := NoetherNormalization(L, var, "L");

 := N [ ],[ ], , ,y3 −x3 xz2 y3 x y3 x2 [ ], ,=x x =y −z x =z y
> AssertInvBasis(N[1], var):
> FactorModuleBasis(var);

+ + + + + + + +
x2

−1 z

x2 y

−1 z

x2 y2

−1 z

x

−1 z

xy

−1 z

xy2

−1 z

1

−1 z

y

−1 z

y2

−1 z





Example 6:  (check for principal ideal)


> var := [w,x,y,z];

 := var [ ], , ,w x y z
> L := [w*x*y*z + y^3 + w*x + z^2];

 := L [ ]+ + +z yxw y3 w x z2

> N := NoetherNormalization(L, var);

N [ ]+ − − − + + − + − + + − − −w 4 w 3 w 3 y w 3 z w 3 x yw 2 x w 2 xz 3 yw 2 w 2 yz z yxw 2 z w 3 w y2 w x y3 z2 ,[ := 

[ ], , ,=w w =x −x w =y −y w =z −z w ]
> AssertInvBasis(N[1], var):
> FactorModuleBasis(var);

+ + +
1

( )−1 x ( )−1 y ( )−1 z

w

( )−1 x ( )−1 y ( )−1 z

w 2

( )−1 x ( )−1 y ( )−1 z

w 3

( )−1 x ( )−1 y ( )−1 z
> NoetherNormalization(L, var, "P");

[ ], ,[ ]+ + +z yxw y3 w x z2 [ ], , ,=w w =x x =y y =z z z

See Also:
InvolutiveBasis, PolTabVar, FactorModuleBasis, SubmoduleBasis, PolHilbertSeries, PolMinPoly, PolRepres, InvolutiveOptions.




Involutive[Has],

Involutive[NotHas] - takes a certain sublist of a list of elements of a free module over a polynomial ring

Calling Sequence:
     Has(B,var,vi,ord)
     NotHas(B,var,vi,ord)

Parameters:
 B    -  list of module elements, typically an involutive basis
 var  -  list of variables (of the polynomial ring)
 vi   -  list of variables to be inspected
 ord  -  (optional) change of monomial ordering

Description:

• NotHas respectively Has returns the list of polynomials of B of which the leading monomial does not contain the variables in vi resp. 
does contain variables in vi.

• The elements in B must be polynomials in the variables var or lists (of the same length) of such polynomials.

• Typically B is an involutive basis of polynomials, cf. InvolutiveBasis, computed with respect to pure lexicographical ordering, and vi 
are the first variables according to this ordering. In this case, NotHas returns the polynomials of B not containing any variables of vi.

• With an optional fourth parameter the monomial ordering which affects the selection of the leading term can be chosen. The default 
ordering is degree reverse lexicographical (with "position over term" ordering in the module case). For a description of all possible 
orderings and assignment of degrees to variables and basis vectors (by means of parameter var) see InvolutiveBasis.

• To extract the sublist consisting of those elements of B that does not contain any of the variables in vi at all one can use the Maple 
function remove (resp. select) combined with has (see examples below).

Examples:
> with(Involutive):


Example 1:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x*y+y*z+z*x, x^2-x*y];

 := L [ ],+ +xy yz z x −x2 xy
> B := InvolutiveBasis(L, var);

 := B [ ], ,+ +xy yz z x + +x2 z x yz + +y2 z z2 x yz2

PolTabVar displays the involutive basis, multiplicativity of variables and leading monomials:
> PolTabVar();

[ ], ,+ +xy yz z x [ ], ,* y z xy

[ ], ,+ +x2 z x yz [ ], ,x y z x2

[ ], ,+ +y2 z z2 x yz2 [ ], ,* y z y2 z
> NotHas(B, var, [x]);

[ ]+ +y2 z z2 x yz2

(Note, w. r. t. pure lex. ordering the summands containing x are the greatest, so we get:)
> NotHas(B, var, [x], 1);

[ ]
> Has(B, var, [x]);

[ ],+ +xy yz z x + +x2 z x yz
> Has(B, var, [x,y]);



[ ], ,+ +xy yz z x + +x2 z x yz + +y2 z z2 x yz2



Example 2: Comparison to Maple functions remove / select / has


> L := [y^2+x*y, y^2-z^2];

 := L [ ],+y2 xy −y2 z2

> B := InvolutiveBasis(L, var);

 := B [ ], ,−y2 z2 +xy z2 +z2 x yz2

> PolTabVar();

[ ], ,−y2 z2 [ ], ,* y z y2

[ ], ,+xy z2 [ ], ,x y z xy

[ ], ,+z2 x yz2 [ ], ,x * z z2 x
> NotHas(B, var, [z]);

[ ],−y2 z2 +xy z2

> remove(has, B, [z]);

[ ]
> Has(B, var, [z]);

[ ]+z2 x yz2

> select(has, B, [z]);

[ ], ,−y2 z2 +xy z2 +z2 x yz2



Example 3: Typically the command NotHas comes in the context of elimination as follows:


> var := [x,y,a,b,c];

 := var [ ], , , ,x y a b c
> L := [x^2+y^2-a, x^2*y^2-b, x^3*y-x*y^3-c];

 := L [ ], ,+ −x2 y2 a −x2 y2 b − −x3 y xy3 c
> L := InvolutiveBasis(L, var, 1);

L − −b a2 4 b2 c2 − −b a2 y 4 b2 y c2 y − −y2 b a2 4 y2 b2 c2 y2 − −y3 b a2 4 y3 b2 c2 y3 + −b y4 y2 a + − +cx y3 a ya2 2 b y, , , , , ,


 := 

+ − +ca x y3 a2 ya3 2 b a y + − + +ca2 x y3 a3 ya4 8 b2 y 2 c2 y − + − +cy3 a ca2 y b xa2 4 b2 x 2 cyb + −cyx 2 b y2 b a, , , ,

+ − −ca yx 2 b y2 a 4 b2 c2 − + − +4 b xy 2 cy2 ca ya2 x + −cy2 x 2 b y3 b a y − + −b xy2
1

2
cy3

1

2
ca y

1

2
b xa − + +2 b x y2 a x cy, , , , ,

+ −xy3
1

2
c

1

2
ya x + −x2 y2 a,





> NotHas(L, var, [x,y], 1);

[ ]− −b a2 4 b2 c2

This of course is interpreted as a ring relation between x^2+y^2, x^2y^2, and x^3y-xy^3.

See Also:
InvolutiveBasis, PolTabVar, Syzygies.




Involutive[PolCartanCharacter] -  compute Cartan characters of a finitely presented module over a polynomial ring

Calling Sequence:
     PolCartanCharacter(i)
     PolCartanCharacter()

Parameters:
 i    -    " " (empty string) or natural number smaller or equal to the number of indeterminates
  

Description:

• Let ∑
=i 0

∞

di v
i be the Hilbert series as discussed in PolHilbertSeries. Then the Cartan characters ( )α ,q i  are defined by


∑
=i 0

∞

di v
i =∑
=i 0

∞

di v
i +









∑

=i 0

−q 1

di v
i vq









∑

=j 1

n ( )α ,q j

( )−1 v j ,


where q is the highest degree of the polynomials in the Janet basis computed by the last call of InvolutiveBasis. (The same formula 
holds with q replaced by the index of regularity plus 1, cf. PolIndexRegularity, with suitably modified Cartan characters α´s.)

• PolCartanCharacter() prints the the highest degree q of the polynomials in the Janet basis computed by the last call InvolutiveBasis 
and returns the list of Cartan characters [ ( )α ,q 1 , ..., ( )α ,q n ] of the factor module of the free module over the polynomial ring modulo 
the submodule generated by this Janet basis. PolCartanCharacter(i) returns the Cartan character ( )α ,q i .

• All this information can also be extracted from the command PolHilbertSeries.

• PolCartanCharacter(" ") simply prints the Cartan characters ( )α ,q 1 , ..., ( )α ,q n , where q is as above.

Examples:
> with(Involutive):
> var := [x,y,z,v];

 := var [ ], , ,x y z v
> L := [x*y+y*z+z*x, x*y*z-v];

 := L [ ],+ +xy yz z x −xyz v
> B := InvolutiveBasis(L, var);

 := B [ ], ,+ +xy yz z x + +v yz2 z2 x + +y2 z2 vy vz
> PolCartanCharacter("");
alpha(4,1) = 15
alpha(4,2) = 6
alpha(4,3) = 0
alpha(4,4) = 0
> PolCartanCharacter();
Cartan Character for q = 4

[ ], , ,15 6 0 0
> PolCartanCharacter(2);

6
> PolTabVar();

[ ], ,+ +xy yz z x [ ], , ,x y z v xy

[ ], ,+ +v yz2 z2 x [ ], , ,x * z v z2 x

[ ], ,+ +y2 z2 vy vz [ ], , ,* y z v y2 z2

> PolHilbertSeries(s);

+ + + +1 4 s 9 s2 15 s3 s4








+15

1

−1 s
6

1

( )−1 s 2

> PolIndexRegularity();

1
In particular, the Hilbert series could be rewritten as 1 + 4*t + t^2*(6*1/((1-t)^2) + 3*1/(1-t)).
Note, the Cartan characters depend on the Hilbert series, which is the same for all variable orderings in case one works with the 
degree reversed lexicographical ordering. However, if one works with the pure lexicographical ordering, one will usually get different 



Hilbert series and hence different Cartan characters:
> B1 := InvolutiveBasis(L, [v,x,y,z], 1);

 := B1 [ ],+ +xy yz z x + +v yz2 z2 x
> PolHilbertSeries(s);

+ +1 3 s s2








+3

1

−1 s
2

1

( )−1 s 2

> PolCartanCharacter();
Cartan Character for q = 2

[ ], , ,3 2 0 0

See Also:
InvolutiveBasis, PolTabVar, PolHilbertSeries, PolHilbertPolynomial, PolHP, PolHilbertFunction, PolHF, PolIndexRegularity.




Involutive[PolCheckHom] -  check whether a matrix represents a homomorphism between two finitely presented 

modules over a polynomial ring

Calling Sequence:
     PolCheckHom(M,A,N,var)

Parameters:
  M     - list (of lists of the same length) of polynomials or matrix with polynomial entries
  A     - list (of lists of the same length) of polynomials or matrix with polynomial entries
  N     - list (of lists of the same length) of polynomials or matrix with polynomial entries
  var   - list of variables of the polynomial ring

Description:

• By means of PolCheckHom one can determine whether A represents a (well defined) homomorphism from the module presented by M 
to the module presented by N (i.e., the elements of M and N are considered as elements of a free module of tuples over the polynomial 
ring with indeterminates var of appropriate rank, and the modules presented by M resp. N are the factor modules of the respective free 
modules modulo the submodules generated by the elements of M resp. N).

• PolCheckHom computes an involutive basis of the module generated by N first. Then it applies involutive reduction modulo this 
involutive basis to the images of the elements of M under A (considered as a homomorphism between free modules mapping row 
vectors). PolCheckHom returns the list of normal forms computed by PolInvReduce of these images. Note that the result is always a 
list of lists even in case A maps into a free module of rank 1.

• Given the result of PolCheckHom, one therefore can check whether the submodule of relations generated by M maps to zero under the 
map between free modules represented by A. Then, A represents a homomorphism from the module presented by M to the module 
presented by N if and only if the result of PolCheckHom consists of lists of zeros only.

• If M and N are lists, then the entries of M and N are polynomials in case of ideals, i.e. submodules of the free module of rank one, or lists 

of polynomials of length m (resp. n), representing elements of the free module of m-tuples (resp. n-tuples) over the polynomial ring. If 
M or N is a matrix, then the generators for the submodules are extracted from the rows of M resp. N.

• The parameter A is either a matrix whose number of rows equals the rank of the free module which contains the elements of M and 
whose number of columns equals the rank of the free module which contains the elements of N, or A is a list of lists of polynomials in 
var of the same length. In the latter case, the corresponding matrix is formed by taking the entries of A as rows. In any case, row 
convection is applied, i.e., a polynomial matrix represents the homomorphism defined by multiplication of rows on the left of this 
matrix.

Examples:
> with(Involutive):


Example 1:


> var := [x];

 := var [ ]x
> M := [x]; A := [1]; N := [x+1];

 := M [ ]x

 := A [ ]1

 := N [ ]+x 1
> PolCheckHom(M, A, N, var);

[ ][ ]-1
Since the result is different from the zero tuple, A does not represent a homomorphism from the module presented by M to the module 
presented by N. In fact, there is no non-zero homomorphism between these modules:
> PolHom(M, N, var);



[ ], , ,[ ]=[ ]1 [ ]0 [ ]1 0 [ ]0


Example 2:


> var := [x,y];

 := var [ ],x y
> M := [[x-y,0],[0,x^3]]; N := [[x^2-y^2,0],[0,x^4]];

 := M [ ],[ ],−x y 0 [ ],0 x3

 := N [ ],[ ],−x2 y2 0 [ ],0 x4

> A := linalg[diag](2*x+2*y, x^3);

 := A












+2 x 2 y 0

0 x3

> PolCheckHom(M, A, N, var);

[ ],[ ],0 0 [ ],0 0
The matrix A represents a homomorphism from the module presented by M to the module presented by N. But the following matrix B 
does not:
> B := linalg[diag](x+2*y, x^3);

 := B












+x 2 y 0

0 x3

> PolCheckHom(M, B, N, var);

[ ],[ ],− +y2 xy 0 [ ],0 0

See Also:
InvolutiveBasis, PolInvReduce, Syzygies, SyzygyModule, PolResolution, PolSubFactor, PolKernel, PolCokernel, PolHom, PolHomHom, 
PolExt1, PolExtn, PolParametrization, PolTorsion, PolSyzOp.




Involutive[PolCoeff] -  express module element as linear combination of given module elements

Calling Sequence:
     PolCoeff(L,G,var)

Parameters:
  L     - polynomial or list (of lists of the same length) of polynomials or matrix with polynomial entries
  G     - list (of lists of the same length) of polynomials
  var   - list of variables of the polynomial ring

Description:

• PolCoeff expresses (if possible) the polynomials in L or the elements of a free module of tuples of polynomials in the polynomial ring 
with indeterminates var given in L as linear combinations of the polynomials resp. the tuples of polynomials of the same length in G. 
The result of PolCoeff is the matrix of coefficients of these linear combinations such that the product of this matrix by the column 
vector composed of the entries in G is the column vector of entries in L, if all entries in L can be expressed as linear combinations of 
the entries in G. For all entries of L that cannot be expressed in this way, the remainder defined by reduction modulo the involutive 
basis of G is ignored, i.e. the matrix product described before only reproduces the part of each entry of L that has zero remainder 
modulo G.

• Technically, PolCoeff computes an involutive basis of G with right hand sides first (see InvolutiveBasis, AddRhs) and then performs 
involutive reduction on all elements in L modulo this involutive basis keeping all coefficients of these reductions (see PolInvReduce). 
The matrix formed by these coefficients is then multiplied by the matrix composed of the right hand sides of the involutive basis 
which finally yields the expressions of the entries in L in terms of the entries in G (if all entries in L reduce to zero modulo the 
involutive basis of G).

• The module elements to be expressed are given in the first argument L. This argument is either a single polynomial, a list of 
polynomials, a list of lists of polynomials of the same length or a matrix of polynomials. In the latter case, a list of lists of polynomials 
is extracted from the matrix L by interpreting the rows of L as tuples of polynomials. A list of polynomials may either stand for several 
polynomials to be expressed as linear combinations or for one element of a free module of tuples of polynomials to be expressed as a 
linear combination. The context is clear from the structure of the second argument G.

• The second argument G is either a list of polynomials in the indeterminates var or a list of lists of the same length of polynomials in 
the indeterminates var.

• If L is a list of length m (or represents a single module element) and G is a list of length n, then the result of PolCoeff is an (m x n

)-matrix (resp. a (1 x n)-matrix) with polynomial entries.

Examples:
> with(Involutive):


Example 1:


> var := [x,y];

 := var [ ],x y
> G := [x^2+y^2, x^4+y^4];

 := G [ ],+x2 y2 +x4 y4

> L := x^8+y^8;

 := L +x8 y8

> C := PolCoeff(L, G, var);

 := C






− + − +x6 y2 x4 y4 x2 y6 2 y4







− +

1

2
x2

1

2
y2 y4

The matrix C gives the coefficients in a linear combination of the polynomials in G that equals L.
> map(expand, evalm(C &* G));

[ ]+x8 y8



This can be done simultaneously for several polynomials:
> L := [x^6+y^6, x^4*y^4];

 := L [ ],+x6 y6 y4 x4

> C := PolCoeff(L, G, var);

 := C













− +x4 y2 x2 y4 0

− +y4 x2 y6 y4






− +

1

2
x2

1

2
y2

1

2
y4

> map(expand, evalm(C &* G));

[ ],+x6 y6 y4 x4

PolCoeff also accepts a matrix L instead of a list L:
> M := matrix([[x^6+y^6], [x^4*y^4]]);

 := M












+x6 y6

y4 x4

> C := PolCoeff(M, G, var);

 := C













− +x4 y2 x2 y4 0

− +y4 x2 y6 y4






− +

1

2
x2

1

2
y2

1

2
y4

> B := matrix(map(a->[a], G));

 := B












+x2 y2

+x4 y4

> map(expand, evalm(C &* B));













+x6 y6

y4 x4

Note that all remainders of reduction modulo the involutive basis of G are ignored:
> PolCoeff(x+y, G, var);

[ ]0 0


Example 2:


> var := [x,y,z];

 := var [ ], ,x y z
> G := [[y, x*y*z], [y+1, 0]];

 := G [ ],[ ],y xyz [ ],+y 1 0
> L := [-1, x*y*z];

 := L [ ],-1 xyz
> C := PolCoeff(L, G, var);

 := C [ ]1 -1
> evalm(C &* G);

[ ]-1 xyz
> map(op, convert(%, listlist));

[ ],-1 xyz

See Also:
InvolutiveBasis, PolTabVar, PolInvReduce, AddRhs, Syzygies, SyzygyModule, PolLeftInverse, PolRightInverse.




Involutive[PolCokernel] -  return presentation of the cokernel of a homomorphism between two finitely presented 

modules over a polynomial ring

Involutive[PolSum] -  return Janet basis of the sum of two submodules of a free module over a polynomial ring

Calling Sequence:
     PolCokernel(A,N,var)
     PolSum(A,N,var)

Parameters:
  A     - list (of lists of the same length) of polynomials or matrix with polynomial entries

  N     - list (of lists of the same length) of polynomials or matrix with polynomial entries
  var   - list of variables of the polynomial ring

Description:

• PolCokernel returns a presentation of the cokernel of the homomorphism represented by A between two finitely presented modules 
over the polynomial ring in var. The domain of this homomorphism is a factor module of the free module of tuples of length equal to 
the number of entries in A (resp. the number of rows of A, if A is a matrix). While the domain of this homomorphism does not need to 
be specified for PolCokernel, a presentation of its range is given by N. More precisely, the homomorphism represented by A maps into 
the factor module of the free module of tuples of length equal to the length of the lists in A (resp. 1 if the entries of A are polynomials 
resp. the number of colums of A, if A is a matrix) modulo its submodule generated by the entries in N (or the rows of N, if N is a 
matrix). The residue classes of the entries resp. rows of A in the module presented by N generate the image of this homomorphism.

• The entries of A and N are polynomials in case the range of the homomorphism is a factor module of the free module of rank one, or 

lists of polynomials of length m, representing elements of the free module of m-tuples over the polynomial ring.

• The result is a Janet basis with respect to the ("term over position") degree reverse lexicographical ordering (cf. InvolutiveBasis). The 
cokernel of the given homomorphism is the factor module of the free module of m-tuples modulo the submodule generated by the 
entries of the result of PolCokernel.

• PolSum is a synonym for PolCokernel. The interpretation of input and output is different in this case: The input A, N forms two 
generating sets for submodules of a free module of tuples over the polynomial ring in var. The result of PolSum is a Janet basis for 
the sum of the two submodules.

Examples:
> with(Involutive):


Example 1:   Presenting the cokernel of a homomorphism


> var := [x,y];

 := var [ ],x y
> A := matrix([[x^2, y^2, 0], [0, x^2, y^2]]);

 := A












x2 y2 0

0 x2 y2

> PolCokernel(A, [[0,0,0]], var);

[ ],[ ], ,0 x2 y2 [ ], ,x2 y2 0
> N := [[x, 0, 0], [0, x, 0], [0, 0, x]];

 := N [ ], ,[ ], ,x 0 0 [ ], ,0 x 0 [ ], ,0 0 x
> PolCokernel(A, N, var);

[ ], , , ,[ ], ,0 0 x [ ], ,0 x 0 [ ], ,x 0 0 [ ], ,0 0 y2 [ ], ,0 y2 0


Example 2:   Computing the Janet basis of the sum of two submodules of a free module over a polynomial ring




Example 2:

> var := [x,y];

 := var [ ],x y
> M1 := [[x-1, y], [0, x^2-y^2]];

 := M1 [ ],[ ],−x 1 y [ ],0 −x2 y2

> M2 := [[x+1, y], [0, x]];

 := M2 [ ],[ ],+x 1 y [ ],0 x
> PolSum(M1, M2, var);

[ ], ,[ ],1 0 [ ],0 y [ ],0 x

See Also:
InvolutiveBasis, PolTabVar, PolInvReduce, Syzygies, SyzygyModule, PolResolution, PolDirectSum, PolSubFactor, PolKernel, PolSyzOp.




Involutive[PolDefect] -  return presentation of defect of exactness / homology module at a certain position of a chain 

complex

Calling Sequence:
     PolDefect(L1,L2,var,v)

Parameters:
  L1    - list (of lists of the same length) of polynomials or matrix with polynomial entries

  L2    - list (of lists of the same length) of polynomials or matrix with polynomial entries
  var   - list of variables of the polynomial ring
  v     - (optional) name of the indeterminate for the Hilbert series of the homology module (default: ’s’)

Description:

• PolDefect returns a presentation of the defect of exactness at a certain position in a chain complex of finitely generated free modules 
over a polynomial ring, i.e., it returns a presentation of a homology module of this chain complex.

• L1 and L2 are interpreted as matrices representing homomorphisms between finitely generated free modules over the polynomial ring 
in the variables var, such that their composition (namely the homomorphism represented by L2 succeeding the homomorphism 
represented by L1) is well defined and gives the zero homomorphism. Row convection is applied, i.e., a polynomial matrix represents 
the homomorphism defined by multiplication of rows on the left of this matrix. PolDefect computes a presentation of the factor 
module defined as the kernel of the homomorphism represented by L2 modulo the image of the homomorphism represented by L1.

• The entries of L1 and L2 may be polynomials or lists of polynomials of the same length which represent generators for the image of 
the represented homomorphism into a free module of tuples over the polynomial ring. In the latter case, the common length of the lists 
in L1 must equal the number of lists (i.e. the number of generators) in L2. If L1 or L2 is a matrix, then the generators for the image of 
the represented homomorphism are extracted from the rows of L1 resp. L2.

• Since the result of PolDefect is a presentation of a subfactor module which is computed using PolSubFactor, the output of PolDefect is 
a list which is formatted in the same way as the output of PolSubFactor. For a description of the format of such a presentation, cf. 
PolSubFactor.

• The optional fourth argument to PolDefect selects the name of the indeterminate for the Hilbert series given as third entry in the 
resulting list. The default name is ’s’ which cannot be affected by a subs command.

Examples:
> with(Involutive):


Example 1:


> var := [x,y];

 := var [ ],x y
> L1 := matrix(1, 2, [x^2,x*y]);

 := L1 [ ]x2 xy
> L2 := matrix(2, 1, [y,-x]);

 := L2












y

−x
Here L1 (resp. L2) represents a homomorphism from the free module of rank 1 (resp. 2) over the polynomial ring in var into the free 
module of rank 2 (resp. 1) over the polynomial ring in var. The composition of the homomorphisms represented by L1 and L2 is the 
zero homomorphism:
> evalm(L1 &* L2);

[ ]0
> PolDefect(L1, L2, var);









, , ,[ ]=[ ]1 [ ],x y [ ]x +1

s

−1 s
[ ],1 0

The defect of exactness is generated by the residue class represented by [ ],x y ; this generator is annihilated by x.
> PolDefect(L1, L2, var, lambda);







, , ,[ ]=[ ]1 [ ],x y [ ]x +1

λ
−1 λ

[ ],1 0

Changing the first homomorphism as follows, we obtain exactness of the chain complex at the position considered here:
> L1a := matrix(1, 2, [x, y]);

 := L1a [ ]x y
> PolDefect(L1a, L2, var);

[ ], , ,[ ]=[ ]1 [ ],0 0 [ ]1 0 [ ],0 0


Example 2:


> var := [x,y];

 := var [ ],x y
> L1 := [x]; L2 := [0];

 := L1 [ ]x

 := L2 [ ]0
L1 (resp. L2) represent the homomorphism defined as multiplication by x (resp. 0) from and into the polynomial ring in var.
> PolDefect(L1, L2, var);







, , ,[ ]=[ ]1 [ ]1 [ ]x +1

s

−1 s
[ ],1 0

See Also:
InvolutiveBasis, PolInvReduce, PolHilbertSeries, Syzygies, SyzygyModule, PolResolution, PolSubFactor, PolKernel, PolHom, 
PolHomHom, PolExt1, PolExtn, PolTorsion, PolParametrization, PolSyzOp.




Involutive[PolDimension] -  return the dimension of the factor module presented by the last computed Janet basis

Calling Sequence:
     PolDimension()

Parameters:
 -    -   none (assumes that the involutive basis has been computed before)

Description:

• PolDimension returns the degree of the filtered Hilbert polynomial (as in PolHP) of the filtration of the factor module for which a 
presentation was computed by the last call of InvolutiveBasis, as explained in PolHilbertSeries.

• Note, PolDimension()-1 equals the degree of PolHilbertPolynomial().

Examples:
> with(Involutive):
> var := [x,y,z];

 := var [ ], ,x y z
> L := [x*y+y*z+z*x, x*y*z-1];

 := L [ ],+ +xy yz z x −xyz 1
> InvolutiveBasis(L, var);

[ ], ,+ +xy yz z x + +1 yz2 z2 x + +y2 z2 y z
> PolTabVar();

[ ], ,+ +xy yz z x [ ], ,1 2 3 xy

[ ], ,+ +1 yz2 z2 x [ ], ,1 * 3 z2 x

[ ], ,+ +y2 z2 y z [ ], ,* 2 3 y2 z2

> PolDimension();

1
> PolHP();

−6 s 3
> PolHilbertPolynomial();

6
> PolHilbertSeries();

+ + + +1 3 s 5 s2 6 s3 6
s4

−1 s

See Also:
InvolutiveBasis, PolTabVar, PolHilbertSeries, PolHilbertPolynomial, PolHP, PolHilbertFunction, PolHF, PolIndexRegularity, 
PolCartanCharacter.




Involutive[PolDirectSum] -  form the matrix whose rows define the direct sum of given submodules of free modules 

over a polynomial ring

Calling Sequence:
     PolDirectSum(L1, L2, ...)

Parameters:
 L1, L2   - lists (or matrices) of generators of the submodule

Description:

• PolDirectSum returns a matrix whose rows form a generating set of the direct sum of given submodules of free modules over a 
polynomial ring.

• The entries of L1, L2, ... are polynomials in case of ideals, i. e. submodules of the free module of rank one, or lists of polynomials of 
the same length, representing elements of a free module of tuples over the polynomial ring. If L1 or L2, ... is a matrix, then the 
generators are extracted from the rows of L1 resp. L2, etc..

• The result is a polynomial block-diagonal matrix.

Examples:
> with(Involutive):
> L1 := [[x^2, y^2+1], [x*y, x*z^2]];

 := L1 [ ],[ ],x2 +y2 1 [ ],xy xz2

> L2 := [[x+y+z, 0, x], [x^3-1, y^2-z^2, 0]];

 := L2 [ ],[ ], ,+ +x y z 0 x [ ], ,−x3 1 −y2 z2 0
> PolDirectSum(L1, L2);













x2 +y2 1 0 0 0

xy xz2 0 0 0

0 0 + +x y z 0 x

0 0 −x3 1 −y2 z2 0

See Also:
InvolutiveBasis, PolTabVar, PolInvReduce, Syzygies, SyzygyModule, PolResolution, PolCokernel, PolSyzOp.




Involutive[PolEulerChar] -  return Euler characteristic of a factor module of a free module over a polynomial ring

Calling Sequence:
     PolEulerChar(L,var)

Parameters:
 L    - list (or matrix) of generators of the submodule

 var  - list of variables (of the polynomial ring)

Description:

• PolEulerChar returns the Euler characteristic of the module M presented by L (i.e., the elements of L are considered as elements of a 

free module over the polynomial ring with indeterminates var of appropriate rank and M is the factor module of this free module 

modulo the submodule that is generated by the elements of L). The Euler characteristic of a finitely presented module M over a 

polynomial ring is defined as the alternating sum of the ranks of the free modules occurring in a free resolution of M. It is independent 
of the choice of the free resolution of M.

• The entries of L are polynomials in case of an ideal, i.e. a submodule of the free module of rank one, or lists of polynomials of length 

m, representing elements of the free module of m-tuples over the polynomial ring. If L is a matrix, then the generators are extracted 
from the rows of L.

• The result of PolEulerChar is the non-negative integer obtained as alternating sum of the entries of the list of ranks returned by 
PolResolutionDim (starting with positive sign for the last entry of this list of ranks and running backwards through this list). Since 
PolEulerChar relies on the result of PolResolutionDim, only one involutive basis computation is needed to obtain the Euler 
characteristic of M (instead of several involutive basis computations performed by PolResolution).

• For more information about Janet bases and resolutions, see W. Plesken, D. Robertz, "Janet’s approach to presentations and 
resolutions for polynomials and linear pdes", Archiv der Mathematik, 84(1), 2005, 22-37.

Examples:
> with(Involutive):


Example 1:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+y+z, x*y+y*z+z*x, x*y*z-1];

 := L [ ], ,+ +x y z + +xy yz z x −xyz 1
> InvolutiveBasis(L, var);

[ ], , ,+ +x y z + +y2 yz z2 − +1 z3 − +y z3 y
> PolTabVar();

[ ], ,+ +x y z [ ], ,x y z x

[ ], ,+ +y2 yz z2 [ ], ,* y z y2

[ ], ,− +1 z3 [ ], ,* * z z3

[ ], ,− +y z3 y [ ], ,* * z z3 y
> PolResolutionDim(L, var);

[ ], , ,2 5 4 1
> PolEulerChar(L, var);

0
> PolResolution(L, var);















, ,












1 +z x 1 −y 0

x −z2 − −y z −z2 − +1 z3













0 −1 z3 z2 +y z

0 0 y -1

−y z3 y − +1 z3 −z2 x

−1 z3 0 +z x 1

− − −y2 yz z2 + +x y z 0 0













+ +x y z

+ +y2 yz z2

− +1 z3

− +y z3 y



Example 2:


> var := [x,y];

 := var [ ],x y
> L := [[x^2-y,y^2,0],[x,y,x]];

 := L [ ],[ ], ,−x2 y y2 0 [ ], ,x y x
> PolResolutionDim(L, var);

[ ], ,1 3 3
> PolEulerChar(L, var);

1
> PolResolution(L, var);













,[ ]-1 x −y













0 − + −y2 x x2 y y2 −x3 xy

y − +y2 xy x2

x y x

See Also:
InvolutiveBasis, PolTabVar, PolInvReduce, Syzygies, SyzygyModule, PolResolution, PolShorterResolution, PolShortestResolution, 
PolResolutionDim.




Involutive[PolExt1] -  return presentation of the first extension module of a finitely presented module over a polynomial 

ring

Calling Sequence:
     PolExt1(M,var,v)

Parameters:
  M     - list (of lists of the same length) of polynomials or matrix with polynomial entries
  var   - list of variables of the polynomial ring
  v     - (optional) name of the indeterminate for the Hilbert series of the subfactor (default: ’s’)

Description:

• PolExt1 returns a presentation of the first extension module with values in the polynomial ring with indeterminates var of the 
module presented by M (i.e., the elements of M are considered as elements of a free module of tuples over the polynomial ring with 
indeterminates var of appropriate rank, and PolExt1 computes the extension module of the factor modules of the respective free 
module modulo the submodule generated by the elements of M).

• If M is a list, then the entries of M are polynomials in the case of an ideal, i.e. a submodule of the free module of rank one, or lists of 

polynomials of length m, representing elements of the free module of m-tuples over the polynomial ring. If M is a matrix, then the 
generators for the submodule are extracted from the rows of M.

• Since the result of PolExt1 is a presentation for a defect of exactness of a chain complex (i.e. a homology module), PolExt1 computes 
this presentation using PolSubFactor. The output of PolExt1 is therefore a list which is formatted in the same way as the output of 
PolSubFactor. For a description of the format of such a presentation, cf. PolSubFactor.

• The optional third argument to PolExt1 selects the name of the indeterminate for the Hilbert series. The default name is ’s’ which 
cannot be affected by a subs command.

Examples:
> with(Involutive):


Example 1:


> var := [x];

 := var [ ]x
> L := [[x,1,1], [1,x,1]];

 := L [ ],[ ], ,x 1 1 [ ], ,1 x 1
> PolExt1(L, var);

[ ], , ,[ ]=[ ]1 [ ],0 1 [ ]− +1 x 1 [ ]0
> L := [[x,1], [1,x], [1,1]];

 := L [ ], ,[ ],x 1 [ ],1 x [ ],1 1
> PolExt1(L, var);

[ ], , ,[ ]=[ ]1 [ ], ,1 -1 0 [ ]− +1 x 1 [ ]0


Example 2:


> var := [x,y];

 := var [ ],x y
> L := [[y, x*y, 0], [y, 0, y^2]];

 := L [ ],[ ], ,y xy 0 [ ], ,y 0 y2

> PolExt1(L, var);









, , ,[ ],=[ ],1 0 [ ],0 1 =[ ],0 1 [ ],1 0 [ ], ,[ ],y y [ ],0 y2 [ ],0 xy + +2 3 s 2

s2

−1 s
[ ],2 0

> L := [[y, y], [x*y, 0], [0, y^2]];



 := L [ ], ,[ ],y y [ ],xy 0 [ ],0 y2

> PolExt1(L, var);







, , ,[ ],=[ ],1 0 [ ], ,1 0 y =[ ],0 1 [ ], ,1 x 0 [ ],[ ],0 y [ ],y 0 +2 2

s

−1 s
[ ],2 0

See Also:
InvolutiveBasis, PolInvReduce, PolHilbertSeries, Syzygies, SyzygyModule, PolResolution, PolSubFactor, PolKernel, PolCokernel, 
PolHom, PolHomHom, PolExtn, PolParametrization, PolTorsion, PolSyzOp.




Involutive[PolExtn] -  return presentation of an extension module of a finitely presented module over a polynomial ring

Calling Sequence:
     PolExtn(q,M,var,v)

Parameters:
  q     - non-negative integer
  M     - list (of lists of the same length) of polynomials or matrix with polynomial entries
  var   - list of variables of the polynomial ring
  v     - (optional) name of the indeterminate for the Hilbert series of the subfactor (default: ’s’)

Description:

• PolExtn returns a presentation of the q-th extension module with values in the polynomial ring with indeterminates var of the module 
presented by M (i.e., the elements of M are considered as elements of a free module of tuples over the polynomial ring with 
indeterminates var of appropriate rank, and PolExtn computes the q-th extension module of the factor modules of the respective free 
module modulo the submodule generated by the elements of M).

• If M is a list, then the entries of M are polynomials in the case of an ideal, i.e. a submodule of the free module of rank one, or lists of 

polynomials of length m, representing elements of the free module of m-tuples over the polynomial ring. If M is a matrix, then the 
generators for the submodule are extracted from the rows of M.

• Since the result of PolExtn is a presentation for a defect of exactness of a chain complex (i.e. a homology module), PolExtn computes 
this presentation using PolSubFactor. The output of PolExtn is therefore a list which is formatted in the same way as the output of 
PolSubFactor. For a description of the format of such a presentation, cf. PolSubFactor.

• The optional fourth argument to PolExtn selects the name of the indeterminate for the Hilbert series. The default name is ’s’ which 
cannot be affected by a subs command.

Examples:
> with(Involutive):


Example 1:


> var := [x];

 := var [ ]x
> L := [[x,1,1], [1,x,1]];

 := L [ ],[ ], ,x 1 1 [ ], ,1 x 1
> PolExtn(0, L, var);













, , ,













=[ ]1













1

1

− −x 1

[ ]0
1

−1 s
[ ]1

> PolExtn(1, L, var);

[ ], , ,[ ]=[ ]1 [ ],0 1 [ ]− +1 x 1 [ ]0
> PolExtn(2, L, var);

[ ], , ,[ ]=[ ]1 [ ]0 [ ]1 0 [ ]0


Example 2:


> var := [x,y];

 := var [ ],x y
> L := [[y, x*y, 0], [y, 0, y^2]];

 := L [ ],[ ], ,y xy 0 [ ], ,y 0 y2

> PolExtn(0, L, var);















, , ,













=[ ]1













−xy

y

x

[ ]0
1

( )−1 s 2 [ ],0 1

> PolExtn(1, L, var);









, , ,[ ],=[ ],1 0 [ ],0 1 =[ ],0 1 [ ],1 0 [ ], ,[ ],y y [ ],0 y2 [ ],0 xy + +2 3 s 2

s2

−1 s
[ ],2 0

> PolExtn(2, L, var);

[ ], , ,[ ]=[ ]1 [ ]0 [ ]1 0 [ ],0 0

See Also:
InvolutiveBasis, PolInvReduce, PolHilbertSeries, Syzygies, SyzygyModule, PolResolution, PolSubFactor, PolKernel, PolCokernel, 
PolHom, PolHomHom, PolExt1, PolParametrization, PolTorsion, PolSyzOp.




Involutive[PolHF] -  compute the filtered Hilbert function for the factor module

Calling Sequence:
     PolHF(p)
     PolHF()

Parameters:
 p    -    " " (empty string) or natural number 
  

Description:

• Let ∑
=i 0

∞

di v
i be the Hilbert series as discussed in PolHilbertSeries. Then PolHF(p) returns ∑

=i 0

p

di for natural numbers p and prints the 

corresponding function in case p is the empty string.

• PolHilbertFunction, of which the present command is a summed up version and which refers to the induced grading rather than to the 
filtration, must not be confused with PolHF().

• PolHF() returns a function expecting one parameter p which computes PolHF(p).

Examples:
> with(Involutive):
> var := [x,y,z,v];

 := var [ ], , ,x y z v
> L := [x*y+y*z+z*x, x*y*z-v];

 := L [ ],+ +xy yz z x −xyz v
> B := InvolutiveBasis(L, var);

 := B [ ], ,+ +xy yz z x + +v yz2 z2 x + +y2 z2 vy vz
> PolHilbertSeries();

+ + + +1 4 s 9 s2 15 s3 s4








+15

1

−1 s
6

1

( )−1 s 2

> f := PolHF();

 := f PolHF
> f(2);

14
> f(20);

1202
> PolHF(20);

1202
> PolHF("");
s = 0: 1
s = 1: 5
s = 2: 14
s = 3: 29
s >= 4: 3*s^2+2 
> PolHP();

+3 s2 2
> PolHilbertFunction("");
Dim(M.0) = 1
Dim(M.1) = 4
Dim(M.2) = 9
Dim(M.3) = 15
Dim(M.s) = -3+6*s, for s >= 4

See Also:
InvolutiveBasis, PolTabVar, PolHilbertSeries, PolHilbertFunction, PolHilbertPolynomial, PolHP, SubmoduleHilbertSeries, 
SubmoduleHilbertPolynomial, SubmoduleHilbertFunction, SubmoduleHP, SubmoduleHF.




Involutive[PolHP] -  compute the filtered Hilbert polynomial for the factor module

Calling Sequence:
     PolHP(p)
     PolHP()

Parameters:
 p    -    natural number or name of an indeterminate
  

Description:

• Let ∑
=i 0

∞

di v
i be the Hilbert series as discussed in PolHilbertSeries. Then PolHP(p) returns ∑

=i 0

p

di for natural numbers p larger than the 

index of regularity and the corresponding polynomial in p inducing this function in case p is an indeterminate. The index of regularity 
can be computed by PolIndexRegularity. Note, all this information can also be extracted from the command PolHF.

• PolHP() returns the above polynomial with ´s´ as the default name of the indeterminate. ´s´ cannot be affected by a subs command.

• PolHilbertPolynomial, of which the present command is a summed up version and which refers to the induced grading rather than to 
the filtration, must not be confused with PolHP().

Examples:
> with(Involutive):
> var := [x,y,z,v];

 := var [ ], , ,x y z v
> L := [x*y+y*z+z*x, x*y*z-v];

 := L [ ],+ +xy yz z x −xyz v
> B := InvolutiveBasis(L, var);

 := B [ ], ,+ +xy yz z x + +v yz2 z2 x + +y2 z2 vy vz
> PolHilbertSeries();

+ + + +1 4 s 9 s2 15 s3 s4








+15

1

−1 s
6

1

( )−1 s 2

> PolHP();

+3 s2 2
> PolHP(20);

1202
> PolHF("");
s = 0: 1
s = 1: 5
s = 2: 14
s = 3: 29
s >= 4: 3*s^2+2 
> PolHP(lambda);

+3 λ2 2
> subs(lambda=3, %);

29

See Also:
InvolutiveBasis, PolTabVar, PolHilbertSeries, PolHilbertPolynomial, PolHilbertFunction, PolHF, SubmoduleHilbertSeries, 
SubmoduleHilbertPolynomial, SubmoduleHilbertFunction, SubmoduleHP, SubmoduleHF.




Involutive[PolHilbertFunction] -  compute the graded Hilbert function 

Calling Sequence:
     PolHilbertFunction(p)
     PolHilbertFunction()

Parameters:
 p    -    " " (empty string) or natural number 
  

Description:

• Let ∑
=i 0

∞

di v
i be the Hilbert series as discussed in PolHilbertSeries. Then PolHilbertFunction(p) returns dp  in case p is a natural 

number and prints the function →s ds  in case p is the empty string.

• PolHF, which is a summed up version of the present command and refers to the filtration rather than to the induced grading, must not 
be confused with PolHilbertFunction.

• PolHilbertFunction() returns a function expecting one parameter p which computes PolHilbertFunction(p).

Examples:
> with(Involutive):
> var := [x,y,z,v];

 := var [ ], , ,x y z v
> L := [x*y+y*z+z*x, x*y*z-v^3];

 := L [ ],+ +xy yz z x −xyz v3

> B := InvolutiveBasis(L, var);

 := B [ ], ,+ +xy yz z x + +v3 yz2 z2 x + +y2 z2 v3 y v3 z
> PolHilbertSeries();

+ + + +1 4 s 9 s2 15 s3 s4








+15

1

−1 s
6

1

( )−1 s 2

> f := PolHilbertFunction();

 := f Involutive/PolHilbertFunction
> f(2);

9
> f(20);

117
> PolHilbertFunction(20);

117
> PolHilbertFunction("");
Dim(M.0) = 1
Dim(M.1) = 4
Dim(M.2) = 9
Dim(M.3) = 15
Dim(M.s) = -3+6*s, for s >= 4

See Also:
InvolutiveBasis, PolTabVar, PolHilbertSeries, PolHF, PolHilbertPolynomial, PolHP, SubmoduleHilbertSeries, 
SubmoduleHilbertPolynomial, SubmoduleHilbertFunction, SubmoduleHP, SubmoduleHF.




Involutive[PolHilbertPolynomial] -  compute the graded Hilbert polynomial for the factor module

Calling Sequence:
     PolHilbertPolynomial(p)
     PolHilbertPolynomial()

Parameters:
 p    -    natural number or name of an indeterminate
  

Description:

• Let ∑
=i 0

∞

di v
i be the Hilbert series as discussed in PolHilbertSeries. Then PolHilbertPolynomial(p) returns dp  in case p is a natural 

number greater than or equal to the index of regularity. If p is the name of an indeterminate, then the Hilbert polynomial in p is 
returned. The information is derived from the last call of InvolutiveBasis. Note, this same information can be extracted from the 
command PolHilbertFunction.

• PolHP, which is a summed up version of the present command and refers to the filtration rather than to the induced grading, must not 
be confused with PolHilbertPolynomial.

• PolHilbertPolynomial() returns the graded Hilbert polynomial of the associated graded module of the residue class module modulo 
the module whose involutive basis has been computed last by InvolutiveBasis. Note, this same information can be extracted from the 
command PolHilbertFunction.

• As optional parameter a name p for the indeterminate of the Hilbert polynomial can be given. The default name of the indeterminate is 
’s’. It will not be affected by a subs command.

Examples:
> with(Involutive):
> var := [x,y,z,v];

 := var [ ], , ,x y z v
> L := [x*y+y*z+z*x, x*y*z-v^3];

 := L [ ],+ +xy yz z x −xyz v3

> B := InvolutiveBasis(L, var);

 := B [ ], ,+ +xy yz z x + +v3 yz2 z2 x + +y2 z2 v3 y v3 z
> PolHilbertSeries();

+ + + +1 4 s 9 s2 15 s3 s4








+15

1

−1 s
6

1

( )−1 s 2

> PolHilbertPolynomial();

− +3 6 s
> PolHilbertPolynomial(6);

33
> PolHP(6);

110
> PolHilbertFunction("");
Dim(M.0) = 1
Dim(M.1) = 4
Dim(M.2) = 9
Dim(M.3) = 15
Dim(M.s) = -3+6*s, for s >= 4
> PolHilbertPolynomial(lambda);

− +3 6 λ
> subs(lambda=3, %);

15

See Also:
InvolutiveBasis, PolTabVar, PolHilbertSeries, PolHP, PolHilbertFunction, PolHF, SubmoduleHilbertSeries, 



SubmoduleHilbertPolynomial, SubmoduleHilbertFunction, SubmoduleHP, SubmoduleHF.




Involutive[PolHilbertSeries] -  Hilbert series of the factor module presented by the last computed Janet basis

Calling Sequence:
     PolHilbertSeries(v)

Parameters:
 v    -  (optional) name of the indeterminate (default: ’s’)

Description:

• PolHilbertSeries returns the generating function counting - according to the standard degrees - the standard monomial basis vectors of 
the factor module F of the free module of m-tuples over the polynomial ring modulo the submodule M generated by the Janet basis 
produced by the last call of InvolutiveBasis.

• The free module of m-tuples over the polynomial ring is graded by the standard grading (maximal degree of the components) and 
therefore induces a grading on its residue class module G modulo the submodule of the leading terms of M (but unfortunately in 
general not on F). Note, this submodule, and therefore also its Hilbert series, depends on the term order chosen in the call of 
InvolutiveBasis. PolHilbertSeries returns the Hilbert series of the graded module G. This Hilbert series agrees with the generating 
function described above, since the standard bases for both F and G are represented by the same monomial elements in the module of 
m-tuples. 

• In the standard case of degree reverse lexicographical monomial order (default value or parameter 2 in the call of InvolutiveBasis) a 
change of the ordering of the variables does not change the resulting Hilbert series though it might change the graded factor module G. 
In the special case, where the Janet basis consists of homogeneous elements, i. e. M is a graded submodule and therefore F also 
inherits a grading, the Hilbert series computed by the present command also is the Hilbert series of F.

• In the non-standard case of pure lexicographical monomial order (parameter 1 or 3 in the call of InvolutiveBasis) the result highly 
depends on the order of the variables and is usually different from the Hilbert series taken in the standard case.

• The output is the corresponding Hilbert series ∑
=i 0

∞

di v
i , where the  di  are the dimensions of the homogeneous components of G defined 

above.

• The default name of the indeterminate v is ’s’. It cannot be affected by a subs command.

• Note, if one has assigned non-standard degrees to the variables or to the standard basis vectors, the command PolHilbertSeries will 
proceed from the leading terms computed by InvolutiveBasis but then reassign the degrees 1 for the variables and 0 for the basis 
vectors. This is usually not what one wants: To proceed with the introduced grading one has to work with PolWeightedHilbertSeries.

Examples:
> with(Involutive):
In the ideal case, the Hilbert series is the Hilbert series of the graded ring given by the polynomial ring modulo the ideal of the 
leading monomials as listed in the last items of the tuples in the output of PolTabVar.
> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+y^2, y+z^2];

 := L [ ],+x y2 +y z2

> InvolutiveBasis(L, var);

[ ], ,+y z2 +x y2 −z2 y x
> PolTabVar();

[ ], ,+y z2 [ ], ,x * z z2

[ ], ,+x y2 [ ], ,x y z y2

[ ], ,−z2 y x [ ], ,x * z z2 y
> PolHilbertSeries();



+ + +1 3 s 4 s2 4
s3

−1 s
Note, the Hilbert series changes, if one works with the pure lexicographical order:
> InvolutiveBasis(L, var, 1);

[ ],+y z2 +x z4

> PolHilbertSeries();

+1
s

−1 s
> PolTabVar();

[ ], ,+y z2 [ ], ,* y z y

[ ], ,+x z4 [ ], ,x y z x
Here is a module example:
> L2 := [[x,-y],[y,x]];

 := L2 [ ],[ ],x −y [ ],y x
> InvolutiveBasis(L2, [x,y]);

[ ],[ ],y x [ ],x −y
> PolHilbertSeries(lambda);

+2 2
λ
−1 λ

> PolTabVar();

[ ], ,[ ],y x [ ],x y [ ],x 2

[ ], ,[ ],x −y [ ],x y [ ],x 1

See Also:
InvolutiveBasis, PolTabVar, FactorModuleBasis, JanetGraph, PolHilbertPolynomial, PolHP, PolHilbertFunction, PolHF, 
PolIndexRegularity, PolCartanCharacter, PolWeightedHilbertSeries, SubmoduleBasis, SubmoduleHilbertSeries.




Involutive[PolHom] -  return presentation of the module of homomorphisms between two finitely presented modules over 

a polynomial ring

Calling Sequence:
     PolHom(M,N,var)

Parameters:
  M     - list (of lists of the same length) of polynomials or matrix with polynomial entries
  N     - list (of lists of the same length) of polynomials or matrix with polynomial entries
  var   - list of variables of the polynomial ring

Description:

• PolHom returns a presentation of the module of homomorphisms from the module presented by M to the module presented by N (i.e., 
the elements of M and N are considered as elements of a free module of tuples over the polynomial ring with indeterminates var of 
appropriate rank, and PolHom computes the homomorphisms between the factor modules of the respective free modules modulo the 
submodules generated by the elements of M resp. N).

• If M and N are lists, then the entries of M and N are polynomials in case of ideals, i.e. submodules of the free module of rank one, or lists 

of polynomials of length m (resp. n), representing elements of the free module of m-tuples (resp. n-tuples) over the polynomial ring. If 
M or N is a matrix, then the generators for the submodules are extracted from the rows of M resp. N.

• The result of PolHom is a list with four entries. The first one defines the abstract generators of the constructed presentation of the 
module of homomorphisms. The second entry is a list of the relations imposed on the abstract generators of the presentation. Finally, 
the third and the fourth entry of the result give the Hilbert series (see PolHilbertSeries) resp. the Cartan characters (see 
PolCartanCharacter) of the module of homomorphisms.

• We denote by F1 resp. F2 the free module of tuples over the polynomial ring with indeterminates var, whose rank equals the length of 

the lists in M resp. N (where the length is 1 in the case of ideals), and we denote by F the module of homomorphisms from F1 to F2 
(represented here by matrices with polynomial entries). Then the first entry of the result of PolHom also gives an embedding of the 
presented module of homomorphisms into the factor module of F modulo the diagonal embedding of N into F. In other words, the first 
entry of the result establishes a correspondence of the abstract generators of the presentation to representatives of residue classes in 
the factor module quoted before.

• The first entry of the result is a list of equations, where the left hand sides are standard basis vectors in their canonical order, i.e. lists 
having exactly one entry equal to 1, the other entries being 0. The common length of these lists is the number of abstract generators in 
the presentation to be defined, and the left hand side of the ith equation is the ith standard basis vector. The right hand side of the ith 
equation is a matrix representing a residue class in the factor module described in the previous point which corresponds to the ith 
abstract generator. Hence, the right hand sides of the first entry provide a generating set for the module of homomorphisms.

• The second entry of the result is a list of polynomials if the constructed presentation involves only one abstract generator and a list of 
lists of polynomials of the same length if there are more than one abstract generator. In the latter case, the common length of these 
lists equals the number of abstract generators. If the constructed presentation involves only one abstract generator, then the 
polynomials in this second list of the result generate the annihilator of this single generator in the polynomial ring. More generally, in 
the case of several abstract generators, the lists of polynomials correspond to linear combinations of the abstract generators, where the 
coefficient of the ith generator is the ith polynomial in the list. All these linear combinations then generate all relations of the abstract 
generators, i.e. generate the submodule R of the free module S over the polynomial ring with indeterminates var, where the rank of S 

equals the number of abstract generators, such that the module of homomorphisms is isomorphic to the factor module S / R.

• The third entry of the result is the Hilbert series (according to standard degrees) of the module of homomorphisms, see 
PolHilbertSeries.

• The fourth entry of the result is the list of Cartan characters of the module of homomorphisms as defined in PolCartanCharacter.

Examples:
> with(Involutive):





Example 1:


> var := [x];

 := var [ ]x
> M := [x]; N := [x+1];

 := M [ ]x

 := N [ ]+x 1
> PolHom(M, N, var);

[ ], , ,[ ]=[ ]1 [ ]0 [ ]1 0 [ ]0
There is no non-zero homomorphism from the module presented by M over the polynomial ring with indeterminate x to the module 
presented by N (because the former is a torsion module).


Example 2:


> var := [x,y];

 := var [ ],x y
> M := matrix([[x,y]]);

 := M [ ]x y
> N := matrix([[0,x^2,y^2], [0,x*y^2,x^2*y]]);

 := N












0 x2 y2

0 xy2 x2 y
> H := PolHom(M, N, var);

H =[ ], , , ,1 0 0 0 0












0 0 −y

0 0 x
=[ ], , , ,0 1 0 0 0













0 −y 0

0 x 0
=[ ], , , ,0 0 1 0 0













−y 0 0

x 0 0
=[ ], , , ,0 0 0 1 0













0 x 0

0 0 y
, , , ,











 := 

=[ ], , , ,0 0 0 0 1












0 y2 xy

0 0 0





 [ ], , ,[ ], , , ,0 0 0 0 x [ ], , , ,−y 0 0 x 0 [ ], , , ,0 x 0 y 0 [ ], , , ,xy y2 0 0 y + +5 7 s s2








+7

1

−1 s

1

( )−1 s 2 [ ],7 1, , ,






The presentation of the module of homomorphisms between the modules presented by M and N involves 5 abstract generators which 
correspond to 
> H[1];

=[ ], , , ,1 0 0 0 0












0 0 −y

0 0 x
=[ ], , , ,0 1 0 0 0













0 −y 0

0 x 0
=[ ], , , ,0 0 1 0 0













−y 0 0

x 0 0
=[ ], , , ,0 0 0 1 0













0 x 0

0 0 y
, , , ,







=[ ], , , ,0 0 0 0 1












0 y2 xy

0 0 0







The relations of the abstract generators in the presentation are given by:
> H[2];

[ ], , ,[ ], , , ,0 0 0 0 x [ ], , , ,−y 0 0 x 0 [ ], , , ,0 x 0 y 0 [ ], , , ,xy y2 0 0 y
The Hilbert series (according to standard degrees) of the module of homomorphisms is:
> H[3];

+ +5 7 s s2








+7

1

−1 s

1

( )−1 s 2

The Cartan characters of the module of homomorphisms are:
> H[4];

[ ],7 1

See Also:
InvolutiveBasis, PolInvReduce, PolHilbertSeries, Syzygies, SyzygyModule, PolResolution, PolSubFactor, PolKernel, PolCokernel, 
PolHomHom, PolExt1, PolExtn, PolParametrization, PolTorsion, PolSyzOp.




Involutive[PolHomHom] -  represent the canonical homomorphism from a finitely presented module to its bidual as a 

matrix

Calling Sequence:
     PolHomHom(M,var,H)

Parameters:
  M     - list (of lists of the same length) of polynomials or matrix with polynomial entries
  var   - list of variables of the polynomial ring
  H     - (optional) symbol to which the result of PolHom (applied to the relations in PolHom(M,var)) is assigned

Description:

• PolHomHom returns a matrix which represents the canonical homomorphism from the module presented by M to its bidual, i.e. to the 
module of homomorphisms that map homomorphisms, from the module presented by M to the polynomial ring in var, to the 
polynomial ring in var.

• The entries (or rows) of M are considered as elements of a free module of tuples over the polynomial ring with indeterminates var of 
appropriate rank, and the module presented by M is the factor module of this free module modulo the submodule generated by the 
entries (or rows) of M.

• The result of PolHomHom is a matrix which represents the homomorphism which maps an element of M to the map which evaluates 
homomorphisms from the module presented by M to the polynomial ring at this element of M.

• Since row convention is applied, a homomorphism from the module presented by M to the polynomial ring is represented by a column 
(i.e. the homomorphism is given by multiplication of rows on the left of this column). Row convention is retained for the result of 
PolHomHom: Multiplying a row r, which represents a residue class in M, to the left of the resulting matrix, one obtains a row whose 

entries are the values of the residue class represented by r under the homomorphisms represented by the generators in the presentation 
of the module of homomorphisms computed by PolHom applied to M. Hence, if homomorphisms from the module presented by M to 
the polynomial ring are now represented by columns w.r.t. the basis of generators given by PolHom, then the multiplication of the 
row defined before by the column representing the homomorphism yields the value of the residue class represented by r under this 
homomorphism.

• If M is a list, then the entries of M are polynomials in case of an ideal, i.e. a submodule of the free module of rank one, or lists of 

polynomials of length m, representing elements of the free module of m-tuples over the polynomial ring. If M is a matrix, then the 
generators for the submodule are extracted from the rows of M.

• As a first step, PolHomHom computes a presentation of the module of homomorphisms from the module presented by M to the 
polynomial ring in var using PolHom. Then PolHom is applied to the relations of this presentation so that a presentation of the range 
of the canonical homomorphism under consideration is obtained. If the optional argument H is present, then PolHomHom assigns the 
latter presentation to the symbol H.

Examples:
> with(Involutive):


Example 1:


> var := [x];

 := var [ ]x
> M := [[x,1,1], [1,x,1]];

 := M [ ],[ ], ,x 1 1 [ ], ,1 x 1
> H := PolHom(M, [0], var);



 := H













, , ,













=[ ]1













1

1

− −x 1

[ ]0
1

−1 s
[ ]1

> e := PolHomHom(M, var);

 := e













1

1

− −x 1
> r := [[1,0,0]];

 := r [ ][ ], ,1 0 0
> evalm(r &* e);

[ ]1
Here, all homomorphisms from the module presented by M to the polynomial ring are represented by multiples of the generator given 

in the first entry of H. The evaluation of this generator at the residue class represented by r gives 1, and each multiple of this generator 
has the according multiple of 1 as value.


Example 2:


> var := [x,y,z];

 := var [ ], ,x y z
> M := matrix([[0,x,-y,0], [-x,0,z,0], [y,-z,0,0]]);

 := M













0 x −y 0

−x 0 z 0

y −z 0 0
> H := PolHom(M, [0], var);

 := H













, , ,













,=[ ],1 0













0

0

0

1

=[ ],0 1













−z

−y

−x

0

[ ][ ],0 0 2
1

( )−1 s 3 [ ], ,0 0 2

> HH := PolHom(H[2], [0], var);

 := HH










, , ,










,=[ ],1 0












0

1
=[ ],0 1













1

0
[ ][ ],0 0 2

1

( )−1 s 3 [ ], ,0 0 2

> e := PolHomHom(M, var, HHM);

 := e













−z 0

−y 0

−x 0

0 1
> HHM;











, , ,










,=[ ],1 0












0

1
=[ ],0 1













1

0
[ ][ ],0 0 2

1

( )−1 s 3 [ ], ,0 0 2

> r := [[1,0,1,1]];

 := r [ ][ ], , ,1 0 1 1
> v := evalm(r &* e);

 := v [ ]− −z x 1
> h := evalm([[2],[-1]]);



 := h












2

-1
> evalm(v &* h);

[ ]− − −2 z 2 x 1
Here, the module of homomorphisms from the module presented by M to the polynomial ring is presented with two generators φ1, φ2, 
see the first component of H. The image of the residue class represented by r in M under the canonical homomorphism represented by e 

is represented by v. In this example the homomorphism −2 φ1 φ2 is evaluated at the residue class represented by r by multiplying the 
row v by the column h.

See Also:
InvolutiveBasis, PolInvReduce, PolHilbertSeries, Syzygies, SyzygyModule, PolResolution, PolSubFactor, PolKernel, PolCokernel, 
PolHom, PolExt1, PolExtn, PolParametrization, PolTorsion, PolSyzOp.




Involutive[PolIndexRegularity] - return index of regularity of the graded module of a residue class module

Calling Sequence:
     PolIndexRegularity()

Parameters:
 -    -   none (assumes that the involutive basis has been computed before)

Description:

• Let ∑
=i 0

∞

di v
i be the Hilbert series as discussed in PolHilbertSeries. Then PolIndexRegularity(p) returns the index of regularity r, i. e. r 

is the biggest integer for which the (graded) Hilbert polynomial and the (graded) Hilbert function give different values, cf. 
PolHilbertPolynomial, PolHilbertFunction, i. e. the smallest r such that the filtered Hilbert function PolHF and the filtered Hilbert 
polynomial PolHP agree on all integers greater or equal to r.

• The command refers to the last call of InvolutiveBasis.

Examples:
> with(Involutive):
> var := [x,y,z];

 := var [ ], ,x y z
> L := [x*y+y*z+z*x, x*y*z-1];

 := L [ ],+ +xy yz z x −xyz 1
> InvolutiveBasis(L, var);

[ ], ,+ +xy yz z x + +1 yz2 z2 x + +y2 z2 y z
> PolIndexRegularity();

2
> PolHilbertSeries(lambda);

+ + + +1 3 λ 5 λ2 6 λ3 6
λ4

−1 λ
> PolTabVar();

[ ], ,+ +xy yz z x [ ], ,1 2 3 xy

[ ], ,+ +1 yz2 z2 x [ ], ,1 * 3 z2 x

[ ], ,+ +y2 z2 y z [ ], ,* 2 3 y2 z2

> PolHilbertPolynomial();

6
> PolHilbertFunction("");
Dim(M.0) = 1
Dim(M.1) = 3
Dim(M.2) = 5
Dim(M.3) = 6
Dim(M.s) = 6, for s >= 4
> PolHP();

−6 s 3
> PolHF("");
s = 0: 1
s = 1: 4
s = 2: 9
s = 3: 15
s >= 4: 6*s-3 

See Also:
InvolutiveBasis, PolTabVar, PolHilbertPolynomial, PolHP, PolHilbertFunction, PolHF, PolCartanCharacter.




Involutive[PolIntersection] -  intersect two submodules of a free module over a polynomial ring

Calling Sequence:
     PolIntersection(L1,L2,var)

Parameters:
  L1   -  list (of lists of the same length) of polynomials or matrix with polynomial entries
  L2   -  list (of lists of the same length) of polynomials or matrix with polynomial entries
  var  -  list of variables of the polynomial ring

Description:

• PolIntersection computes a Janet basis of the intersection of the submodules generated by L1 and L2 in a free module of tuples over 
the polynomial ring in the variables var.

• The entries of L1 and L2 are polynomials in case of ideals, i. e. submodules of the free module of rank one, or lists of polynomials of 

length m, representing elements of the free module of m-tuples over the polynomial ring. In the latter case, the lists in L1 and L2 must 
be of the same length. If L1 or L2 is a matrix, then the generators are extracted from the rows of L1 resp. L2.

• The result of PolIntersection is a list of polynomials or a list of lists of polynomials according to the structure of the input.

Examples:
> with(Involutive):


Example 1:  intersection of ideals


> var := [x,y];

 := var [ ],x y
> L1 := [x^2+y^2-1]; L2 := [x-y];

 := L1 [ ]+ −x2 y2 1

 := L2 [ ]−x y
> PolIntersection(L1, L2, var);

[ ]+ − − − +x3 y2 x x x2 y y3 y
> factor(%[1]);

( )−x y ( )+ −x2 y2 1
> L1 := [x^2+y^2-4,x^2-y^2]; L2 := [x^2-x-1];

 := L1 [ ],+ −x2 y2 4 −x2 y2

 := L2 [ ]− −x2 x 1
> PolIntersection(L1, L2, var);

[ ], ,− + + − − +y2 x 2 x y2 x2 2 x2 y2 2 − + + − +3 x2 2 x4 x3 2 x − + + − − +y2 2 x3 y2 2 y2 x 2 x3 4 x


Example 2:  intersection of two submodules of the free module of rank 2 over the polynomial ring in the variables x, y, z


> var := [x,y,z];

 := var [ ], ,x y z
> L1 := [[x^2+y^2, z^2], [x^4, 0]]; L2 := [[z^2, x^2+y^2], [0, x^4]];

 := L1 [ ],[ ],+x2 y2 z2 [ ],x4 0

 := L2 [ ],[ ],z2 +x2 y2 [ ],0 x4

> PolIntersection(L1, L2, var);

[ ],[ ],0 z2 x4 [ ],z2 x4 0

See Also:
InvolutiveBasis, PolInvReduce, PolHilbertSeries, Syzygies, PolResolution, PolLeftInverse, PolRightInverse, PolKernel, PolSum, 
PolDirectSum, PolSubFactor, PolSyzOp.




Involutive[PolInvReduce] -  return the normal form with respect to a Janet basis

Calling Sequence:
     PolInvReduce(f,B,var,ord,mode)

Parameters:
 f    -   (tuple of) polynomial(s) (or list of such) to be reduced
 B    -   Janet basis
 var  -   list of variables (of the polynomial ring)
 ord  -   (optional) type of monomial ordering
 mode -   (optional) string specifying options for the computation

Description:

• PolInvReduce returns the normal form representing the residue class of f modulo the submodule of the free module of m-tuples 

generated by the Janet basis B. This is done by involutive reduction. Note, if m=1, brackets can be omitted: one deals with an ideal in 
the polynomial ring. If f is a list of (tuples of) polynomials, then the list of the corresponding normal forms is returned.

• The Janet basis B is given as a list of lists of polynomials in var in the module case and as a list of polynomials in the ideal case. 
Note, the program does not check whether B is a Janet basis with respect to var and ord. (Changing ord is not so critical, however, 
changing the ordering in var can result in wrong answers.)

• As optional fourth parameter the values 1 to 4 are accepted which might affect the sequential order in which the reduction steps are 
performed. It does not affect the final coset representative. If ord = 1, highest terms with respect to the pure lexicographical ordering 
are reduced first, even if the Janet basis is taken with respect to degree reverse lexicographical ordering. In case ord = 2 the default 
degree reverse lexicographical order is taken. The values 3 and 4 select pure lexicographical ordering and degree reverse 
lexicographical ordering resp., but change from "position over term" order to "term over position" order.

• If InvolutiveBasis was called with user defined degrees for variables and / or standard basis vectors, the corresponding parameter var 
has to be specified here in the same manner.

• If the letter "C" is present in mode, then PolInvReduce additionally returns the coefficients of the elements subtracted from the input 
to obtain the normal form representative (remainder) with respect to the Janet basis. (For a more comfortable way of using this option, 
see PolCoeff.)

• If the letter "S" is present in mode, the program uses simplify instead of expand in the normal form procedure. If the polynomials in 
the input B contain nonrational coefficients, more precisely, if the ground field contains algebraic elements over the rationals (RootOf
), then simplify is used instead of expand automatically.

• If B is a Janet basis with right hand sides (cf. InvolutiveBasis), one can specify a right hand side for f in order to let PolInvReduce 
perform any operation on both left and right hand side. For instance the input f=f is turned into the equation of the normal form 
representative (remainder) on the left hand side and f minus an explicit linear combination of the right hand sides of the elements of 
the Janet basis corresponding to the reduction. Usually the right hand sides of the Janet basis will express the elements of the Janet 
basis in term of the original generators. Therefore the right hand side of the equation will then also express the reducing element in 
terms of the original module generators. 

Examples:
> with(Involutive):


Example 1:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+y+z, x*y+y*z+z*x, x*y*z-1];

 := L [ ], ,+ +x y z + +xy yz z x −xyz 1
> B := InvolutiveBasis(L, var);



 := B [ ], , ,+ +x y z + +y2 yz z2 −z3 1 − +y z3 y
> PolInvReduce(z^4, B, var);

z
> f := x^2+y^2;

 := f +x2 y2

> PolInvReduce(f, B, var);

−z2

How can the remainder −z2 be expressed as linear combination in f and the basis B?
> PolInvReduce(f, B, var, "C");

[ ],−z2 [ ], , ,− −x y z 2 0 0
> f - expand((x-y-z)*B[1] + 2*B[2]);

−z2

If one wants the coefficients with respect to the original generators, one has to give them names as follows:
> L1 := [x+y+z=a, x*y+y*z+z*x=b, x*y*z-1=c];

 := L1 [ ], ,=+ +x y z a =+ +xy yz z x b =−xyz 1 c
> B1 := InvolutiveBasis(L1, var);

 := B1 [ ], , ,=+ +x y z a =+ +y2 yz z2 + −z a ya b =−z3 1 − +z2 a z b c =− +y z3 y + −cy a z2 y b z y
> PolTabVar();

[ ], ,=+ +x y z a [ ], ,x y z x

[ ], ,=+ +y2 yz z2 + −z a ya b [ ], ,* y z y2

[ ], ,=−z3 1 − +z2 a z b c [ ], ,* * z z3

[ ], ,=− +y z3 y + −cy a z2 y b z y [ ], ,* * z z3 y
> f;

+x2 y2

> PolInvReduce(f=f, B1, var);

=−z2 − − + − + +z a ya 2 b xa x2 y2

A list of polynomials can be reduced in one step:
> PolInvReduce([x^2+y^2, x*y+y*z=p, x*y*z], B1, var);

[ ], ,−z2 =+yz z2 − +z a b p 1
Changing the polynomial ordering and the ordering of variables respectively:
> PolInvReduce(f, B1, var, 1);

−z2

> varnew := [z,y,x]: PolInvReduce(f, B, varnew);

+x2 y2



Example 2: A sample calculation for modules over the polynomial ring Q[x,y]:


> L2 := [[x^2-1, 0], [x*y, x*y], [0, y^2-1]];

 := L2 [ ], ,[ ],−x2 1 0 [ ],xy xy [ ],0 −y2 1
> B2 := InvolutiveBasis(L2, [x,y]);

 := B2 [ ], , , , ,[ ],0 −y2 1 [ ],xy xy [ ],y2 x2 [ ],−x2 1 0 [ ],−y3 y 0 [ ],0 − +x y2 x
> PolInvReduce([x*y^3,0], B2, [x,y]);

[ ],0 −xy


Example 3: Using transcendental elements to express an element in terms of the generators:


> L3 := [x+y-a, x^2+y^2-b];

 := L3 [ ],+ −x y a + −x2 y2 b
> B3 := InvolutiveBasis(L3, [x,y]);

 := B3






,+ −x y a − + −y2 ya

1

2
a2

1

2
b

> PolInvReduce(x*y, B3, [x,y]);

−
1

2
a2

1

2
b

Note this only works well because +x y and +x2 y2 are algebraically independent. In case of algebraically dependent generators 
division by zero might occur. This can be overcome by using equations as in Example 1 above.





Example 4:


> L4 := [x^2-y^3, x^4+y^6];

 := L4 [ ],−x2 y3 +x4 y6

> B4 := InvolutiveBasis(L4, [x=3,y=2]);

 := B4 [ ], ,−x2 y3 y6 xy6

> PolInvReduce(x^4, B4, [x=3,y=2]);

0

See Also:
InvolutiveBasis, InvolutiveBasisFast, InvolutiveBasisGINV, PolTabVar, PolInvReduceFast, FactorModuleBasis, PolCoeff.




Involutive[PolInvReduceFast] -  return the normal form with respect to a Janet basis (C++ version)

Calling Sequence:
     PolInvReduceFast(f,B,var,ord,mode,opt)

Parameters:
 f     -   (tuple of) polynomial(s) (or list of such) to be reduced
 B     -   Janet basis
 var   -   list of variables (of the polynomial ring)
 ord   -   (optional) type of monomial ordering
 mode  -   (optional) string specifying options for the computation
  opt   -   (optional) equation specifying options for the computation

Description:

• PolInvReduceFast invokes the C++ version of the command PolInvReduce. Up to now, only the algorithm for the standard setting 
(degree reverse lexicographical ordering (i.e. ord is 2 or 4) and default degrees) is implemented in C++. If PolInvReduceFast is 
called with a non-standard option, then PolInvReduce is applied internally to the same data.

• The parameter B should be the result of InvolutiveBasisFast. If this is not the case, InvolutiveBasisFast is applied to B before starting 
the involutive reductions. (See, however, the description of the option "L" below.)

• The parameters var and ord have the same meaning as in PolInvReduce.

• The advantage of this command is clearly the enormous speed up. (Note, you cannot interrupt this command from within Maple; you 
have to kill the process "JB" instead.)

• If the letter "C" is given in mode, then PolInvReduceFast additionally returns the coefficients of the elements subtracted from the 
input to obtain the normal form representative (remainder) with respect to the Janet basis.

• If the letter "L" is present in mode, then PolInvReduceFast does not check whether the given involutive basis B equals the one which 
was computed by the last call of InvolutiveBasisFast. This option should speed up the repetitive use of PolInvReduceFast. Note that, 
even if the computations of PolInvReduceFast rely upon the basis computed by the C++ program, the parameter B must match this 
basis, since certain data (e.g. the number of entries of the tuples in the module case) are determined from B.

• The only possible left hand side of the optional equation opt is the string "char". If InvolutiveBasisFast has been run before using the 

option "char"=c, then this option must also be given to PolInvReduceFast in order to perform involutive reductions in characteristic c 
(cf. Example 3).

• Using the option "C++" of InvolutiveOptions, the command PolInvReduce is replaced by PolInvReduceFast for the current Maple 
session (which has the corresponding effect on all Maple procedures that call PolInvReduce).

Examples:
> with(Involutive):


Example 1:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+y+z, x*y+y*z+z*x, x*y*z-1];

 := L [ ], ,+ +x y z + +xy yz z x −xyz 1
> B := InvolutiveBasisFast(L, var);

 := B [ ], , ,+ +x y z + +y2 yz z2 −z3 1 −yz3 y
> PolInvReduceFast(z^4, B, var);

z
> PolInvReduceFast(x^2+y^2, B, var);

−z2





Example 2:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+y+z=[1,0,0], x*y+y*z+z*x=[0,1,0], x*y*z-1=[0,0,1]];

 := L [ ], ,=+ +x y z [ ], ,1 0 0 =+ +xy yz z x [ ], ,0 1 0 =−xyz 1 [ ], ,0 0 1
> B := InvolutiveBasisFast(L, var);

 := B [ ], , ,=+ +x y z [ ], ,1 0 0 =+ +y2 yz z2 [ ], ,+y z -1 0 =−z3 1 [ ], ,z2 −z 1 =−yz3 y [ ], ,yz2 −yz y
> PolInvReduceFast(z^4=[0,0,0], B, var);

=z [ ], ,−z3 z2 −z
> PolInvReduceFast(z^4, B, var);

z


Example 3:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+2*y+3*z, x*y+2*y*z+3*z*x, x*y*z-1];

 := L [ ], ,+ +x 2 y 3 z + +xy 2 yz 3 z x −xyz 1
> B := InvolutiveBasisFast(L, var, "char"=7);

 := B [ ], , ,+ +x 2 y 3 z +y2 z2 + +yz2 4 z3 5 + +z4 3 y 2 z
> PolInvReduceFast(x^3, B, var, "char"=7);

+4 z3 6

See Also:
InvolutiveBasisFast, InvolutiveBasis, InvolutiveOptions, PolTabVar, FactorModuleBasis, PolInvReduce, PolHilbertSeries, Syzygies, 
SyzygyModule, SyzygyModuleFast.




Involutive[PolInvReduceGINV] -  Python/C++ version of PolInvReduce

Calling Sequence:
     PolInvReduceGINV(f,B,var,ord,mode,opt)

Parameters:
 f     -   (tuple of) polynomial(s) (or list of such) to be reduced
 B     -   Janet basis
 var   -   list of variables (of the polynomial ring)
 ord   -   (optional) type of monomial ordering
 mode  -   (optional) string specifying options for the computation
  opt   -   (optional) equation specifying options for the computation

Description:

• PolInvReduceGINV invokes the version of the command PolInvReduce which uses the C++ module ginv for Python to perform the 
involutive reduction.

• The parameter B should be the result of InvolutiveBasisGINV. If this is not the case, InvolutiveBasisGINV is applied to B before 
starting the involutive reductions. (See, however, the description of the option "L" below.)

• The parameters var and ord have the same meaning as in PolInvReduce.

• The advantage of this command is clearly the enormous speed up. (Note, you cannot interrupt this command from within Maple; you 
have to kill the corresponding process "python" instead.)

• If the letter "C" is given in mode, then PolInvReduceGINV additionally returns the coefficients of the elements subtracted from the 
input to obtain the normal form representative (remainder) with respect to the Janet basis.

• If the letter "L" is present in mode, then PolInvReduceGINV does not check whether the given involutive basis B equals the one which 
was computed by the last call of InvolutiveBasisGINV. This option should speed up the repetitive use of PolInvReduceGINV. Note 
that, even if the computations of PolInvReduceGINV rely upon the basis computed by the Python/C++ program, the parameter B must 
match this basis, since certain data (e.g. the number of entries of the tuples in the module case) are determined from B.

• Possible left hand sides of the optional equations opt are the strings "char", "algext", "transext", "Name", "quiet", "donotread",

• If InvolutiveBasisGINV has been run before using the option "char"=c, then this option must also be given to PolInvReduceFast in 
order to perform involutive reductions in characteristic c (cf. Example 3).

• The right hand side of an equation "algext"=p in opt is expected to be a univariate polynomial in an indeterminate ζ which does not 

occur in var. The coefficients of p must be algebraic over the ground field in the sense that they are rational expressions in RootOf 

and indeterminates ξ used in previously given right hand sides of other equations "algext"=q in opt. This extends the ground field 

(defined so far) by ζ which has minimal polynomial p, i.e. every occurrence of ζ in L is subject to the relation =p 0 (cf. Example 3).

• The right hand side of an equation "transext"=z in opt is expected to be a name for an indeterminate. This extends the ground field 

(defined so far) by a new transcendental element z.

• Using the option "GINV" of InvolutiveOptions, the command PolInvReduce is replaced by PolInvReduceGINV for the current Maple 
session (which has the corresponding effect on all Maple procedures that call PolInvReduce).

• The right hand side of an equation "Name"=s is expected to be a string. PolInvReduceGINV appends s to the default name for the 
temporary file to which the input for ginv is written.

• The right hand side of an equation "donotread"=s is expected to be a boolean value. If s equals true, then PolInvReduceGINV does not 
read the result produced by the Python/C++ program and does not return a result.

• As right hand side of an equation "quiet"=t in opt, a boolean value t is expected. The default value is false. If t equals true, then no 
intermediate output is produced on the screen by the Python/C++ program.



• For more information about ginv, cf. http://invo.jinr.ru and http://wwwb.math.rwth-aachen.de/Janet.

Examples:
> with(Involutive):


Example 1:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+y+z, x*y+y*z+z*x, x*y*z-1];

 := L [ ], ,+ +x y z + +xy yz z x −xyz 1
> B := InvolutiveBasisGINV(L, var);

 := B [ ], , ,+ +x y z + +y2 yz z2 −z3 1 −yz3 y
> PolInvReduceGINV(z^4, B, var);

z
> PolInvReduceGINV(x^2+y^2, B, var);

−z2



Example 2:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+y+z=[1,0,0], x*y+y*z+z*x=[0,1,0], x*y*z-1=[0,0,1]];

 := L [ ], ,=+ +x y z [ ], ,1 0 0 =+ +xy yz z x [ ], ,0 1 0 =−xyz 1 [ ], ,0 0 1
> B := InvolutiveBasisGINV(L, var);

 := B [ ], , ,=+ +x y z [ ], ,1 0 0 =+ +y2 yz z2 [ ], ,+y z -1 0 =−z3 1 [ ], ,z2 −z 1 =−yz3 y [ ], ,yz2 −yz y
> PolInvReduceGINV(z^4=[0,0,0], B, var);

=z [ ], ,−z3 z2 −z
> PolInvReduceGINV(z^4, B, var);

z


Example 3:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+2*y+3*z, x*y+2*y*z+3*z*x, x*y*z-1];

 := L [ ], ,+ +x 2 y 3 z + +xy 2 yz 3 z x −xyz 1
> B := InvolutiveBasisGINV(L, var, "char"=7);

 := B [ ], , ,+ +x 2 y 3 z +y2 z2 + +yz2 4 z3 5 + +z4 3 y 2 z
> PolInvReduceGINV(x^3, B, var, "char"=7);

+4 z3 6

See Also:
InvolutiveBasis, InvolutiveBasisGINV, InvolutiveOptions, PolTabVar, FactorModuleBasis, PolInvReduce, PolInvReduceFast, 
PolHilbertSeries, Syzygies, SyzygyModule.




Involutive[PolKernel] -  return presentation of the kernel of a homomorphism between two finitely presented modules 

over a polynomial ring

Calling Sequence:
     PolKernel(M,A,N,var,K)

Parameters:
  M     - list (of lists of the same length) of polynomials or matrix with polynomial entries
  A     - list (of lists of the same length) of polynomials or matrix with polynomial entries
  N     - list (of lists of the same length) of polynomials or matrix with polynomial entries
  var   - list of variables of the polynomial ring
  K     - (optional) symbol

Description:

• PolKernel returns a presentation of the kernel of the homomorphism which is represented by A. The homomorphism is understood as 
a map from the module presented by M to the module presented by N (i.e., the elements of M and N are considered as elements of a free 
module of tuples over the polynomial ring with indeterminates var of appropriate rank, and the domain and the range of the 
homomorphism are the factor modules of the respective free modules modulo the submodules generated by the elements of M resp. N).

• If M and N are lists, then the entries of M and N are polynomials in case of ideals, i.e. submodules of the free module of rank one, or lists 

of polynomials of length m (resp. n), representing elements of the free module of m-tuples (resp. n-tuples) over the polynomial ring. If 
M or N is a matrix, then the generators are extracted from the rows of M resp. N.

• The parameter A represents a homomorphism from the free module of m-tuples to the free module of n-tuples which maps the 
submodule generated by M into the submodule generated by N. If A is a matrix, then this homomorphism is given by multiplying A 

from the right to m-tuples.

• If A is a list, then it contains one polynomial in var in the case of ideals or a list of lists of polynomials in var of the same length. In 

the latter case the number of lists must be equal to m, and the common length of these lists must be equal to n. If A is a matrix, then the 

number of rows must be equal to m, and the number of columns must be equal to n.

• The result of PolKernel is a list with four entries. The first one defines the abstract generators of the constructed presentation of the 
kernel. The second entry is a list of the relations imposed on the abstract generators of the presentation. Finally, the third and the 
fourth entry of the result give the Hilbert series (see PolHilbertSeries) resp. the Cartan characters (see PolCartanCharacter) of the 
kernel.

• The first entry of the result is a list of equations, where the left hand sides are standard basis vectors in their canonical order, i.e. lists 
having exactly one entry equal to 1, the other entries being 0. The common length of these lists is the number of abstract generators in 
the presentation to be defined, and the left hand side of the ith equation is the ith standard basis vector. The right hand side of the ith 
equation is a list of polynomials representing a residue class in the module presented by M. It corresponds to the ith abstract generator. 
Hence, the right hand sides of the first entry provide a generating set for the kernel.

• The second entry of the result is a list of polynomials if the constructed presentation involves only one abstract generator and a list of 
lists of polynomials of the same length if there are more than one abstract generator. In the latter case, the common length of these 
lists equals the number of abstract generators. If the constructed presentation involves only one abstract generator, then the 
polynomials in this second list of the result generate the annihilator of this single generator in the polynomial ring. More generally, in 
the case of several abstract generators, the lists of polynomials correspond to linear combinations of the abstract generators, where the 
coefficient of the ith generator is the ith polynomial in the list. All these linear combinations then generate all relations of the abstract 
generators, i.e. generate the submodule R of the free module S over the polynomial ring with indeterminates var, where the rank of S 

equals the number of abstract generators, such that the kernel is isomorphic to the factor module S / R.

• The third entry of the result is the Hilbert series (according to standard degrees) of the kernel, see PolHilbertSeries.

• The fourth entry of the result is the list of Cartan characters of the kernel as defined in PolCartanCharacter.



• If the optional fifth parameter K is provided, then a matrix is formed whose rows are the generators given in the presentation of the 
kernel, i.e. the right hand sides in the first entry of the output list, and this matrix is assigned to the symbol K. 

Examples:
> with(Involutive):


Example 1:


Let R be the univariate polynomial ring in x with rational coefficients.
> var := [x];

 := var [ ]x
> M := [x^2-1]; N := [x-1];

 := M [ ]−x2 1

 := N [ ]−x 1
> A := [1];

 := A [ ]1

represents the homomorphism (a -> a) from R / ( −x2 1) to R / ( −x 1). A presentation of the kernel of this map is:
> PolKernel(M, A, N, var);

[ ], , ,[ ]=[ ]1 [ ]− +x 1 [ ]+x 1 1 [ ]0

Hence, the kernel is generated by one element which, multiplied by ( +x 1), gives zero in R / ( −x2 1).
> PolKernel(M, A, N, var, ’K’);

[ ], , ,[ ]=[ ]1 [ ]− +x 1 [ ]+x 1 1 [ ]0
> evalm(K);

[ ]− +x 1


Example 2:


Let again R be the univariate polynomial ring in x with rational coefficients.
> var := [x];

 := var [ ]x
> M := [[x,1,1], [1,x,1]];

 := M [ ],[ ], ,x 1 1 [ ], ,1 x 1
> A := matrix([[x,0,0], [0,x,0], [0,0,x]]);

 := A













x 0 0

0 x 0

0 0 x

represents the multiplication by x on the module R3 / < M >.
> PolKernel(M, A, M, var);

[ ], , ,[ ]=[ ]1 [ ], ,0 0 0 [ ]1 0 [ ]0
The kernel of this homomorphism is zero.

Now we consider the map from R3 / < M > to the zero module which multiplies every element of R3 / < M > by x.
> B := matrix([[x], [x], [x]]);

 := B













x

x

x
> PolKernel(M, B, [0], var, ’K’);







, , ,[ ],=[ ],1 0 [ ], ,-1 0 1 =[ ],0 1 [ ], ,-1 1 0 [ ][ ],0 −x 1 +2

s

−1 s
[ ]1

We obtain another presentation of the module R3 / < M >.
> evalm(K);













-1 0 1

-1 1 0



> evalm(K &* B);













0

0

See Also:
InvolutiveBasis, PolTabVar, PolInvReduce, Syzygies, SyzygyModule, PolResolution, PolSubFactor, PolHom, PolHomHom, PolExt1, 
PolExtn, PolParametrization, PolTorsion, PolSyzOp.




Involutive[PolLeftInverse] -  compute left inverse of a polynomial matrix

Calling Sequence:
     PolLeftInverse(M,var)

Parameters:
 M    -  matrix of polynomials in var or list of lists of the same length of polynomials in var
 var  -  list of variables (of the polynomial ring)

Description:

• PolLeftInverse computes (if possible) a left inverse of the polynomial matrix M, i.e. a polynomial matrix L such that the product of L 
by M is the identity matrix.

• The first parameter M is expected to be a matrix whose entries are polynomials in the variables var or a list of lists of polynomials in 
var, where each list is of the same length. In the second case, PolLeftInverse forms a matrix by taking the lists in M as rows and 
computes a left inverse of this matrix.

• If no left inverse of M exists, PolLeftInverse returns FAIL.

• If a left inverse L of M exists, PolLeftInverse returns such an L as a matrix if M is a matrix, or returns the list of the rows of L if M is a list 
as explained above.

• Right inverses of polynomial matrices are computed by PolRightInverse.

Examples:
> with(Involutive):
In the first example we give the input as a matrix:
> M := matrix([[2*x^2, 4*x^2-2, 0], [x^2, 0, x^2-1], [-1, 0, 0], [2*x^2, 2*x^2, x^2]]);

 := M













2 x2 −4 x2 2 0

x2 0 −x2 1

-1 0 0

2 x2 2 x2 x2

> PolLeftInverse(M, [x]);













0 0 -1 0

− +
1

2
x2 2 x2 3 x2 − +2 x2 2

−x2 − −2 x2 1 −3 x2 −2 x2 1
A list of lists of the same length of polynomials is also accepted and interpreted as the list of rows of a matrix:
> M := [[2*x^2, 4*x^2-2, 0], [x^2, 0, x^2-1], [-1, 0, 0], [2*x^2, 2*x^2, x^2]];

 := M [ ], , ,[ ], ,2 x2 −4 x2 2 0 [ ], ,x2 0 −x2 1 [ ], ,-1 0 0 [ ], ,2 x2 2 x2 x2

> PolLeftInverse(M, [x]);







, ,[ ], , ,0 0 -1 0







, , ,− +

1

2
x2 2 x2 3 x2 − +2 x2 2 [ ], , ,−x2 − −2 x2 1 −3 x2 −2 x2 1

Substitute y for x in the second column of the matrix in the preceding example and consider y as a parameter, i.e. as element of the 
ground field:
> M := matrix([[2*x^2, 4*y^2-2, 0], [x^2, 0, x^2-1], [-1, 0, 0], [2*x^2, 2*y^2, x^2]]);



 := M













2 x2 −4 y2 2 0

x2 0 −x2 1

-1 0 0

2 x2 2 y2 x2

> PolLeftInverse(M, [x]);













0 0 -1 0

1

2

1

−2 y2 1
0

x2

−2 y2 1
0

−
y2

−2 y2 1
-1 −

x2

−2 y2 1
1

If M is considered as a polynomial matrix in the variables x and y, then M has no left inverse:
> PolLeftInverse(M, [x,y]);

FAIL

See Also:
InvolutiveBasis, PolTabVar, PolInvReduce, PolRightInverse, AddRhs.




Involutive[PolMinPoly] -  minimal polynomial of an element of the residue class ring

Calling Sequence:
     PolMinPoly(m,B,var,mode)

Parameters:
 m    -   element of the residue class ring (a polynomial in var)
 B    -   Janet basis 
 var  -   list of variables (of the polynomial ring)
 mode -   (optional) string or equation whose left hand side is a string

Description:

• PolMinPoly returns the minimal polynomial for the residue class represented by  m in the residue class ring of the polynomial ring 
modulo the ideal generated by B in case its degree does not exceed a certain positive integer. By default this integer is 30.

• var is the list of variables of the polynomial ring. (PolMinPoly does not check whether B is a Janet basis with respect to var.)

• By default the result of PolMinPoly is a polynomial in the indeterminate λ. The name of the indeterminate can be changed by the 
option described below.

• Note, minimal polynomials are defined for polynomial rings only. So this command cannot be applied to modules.

• The optional parameter mode may occur repeatedly. It may be equal to the string "S" or to an equation whose left hand side is one of 
the following strings: "degree", "var", "subs".

• If mode equals "S", then PolMinPoly  uses simplify instead of expand in the normal form procedure.

• If mode is given as equation "degree"=d, where d is a positive integer, then the upper bound for the degree of the minimal polynomial 

to be computed is set to d.

• If mode equals "var"=z, where z is a name for an indeterminate, then the resulting minimal polynomial is returned as a polynomial in 

the variable z.

• If mode is the equation "subs"=s, then s is substituted for the indeterminate in the resulting minimal polynomial.

Examples:
> with(Involutive):


Example 1:


> var := [x,y];

 := var [ ],x y
> L := [x^3-x^2, x*y^2, y^3];

 := L [ ], ,−x3 x2 xy2 y3

> B := InvolutiveBasis(L, var);

 := B [ ], , ,y3 xy2 −x3 x2 x2 y2

> PolMinPoly(y, B, var);

λ3

> PolMinPoly(x^2+y, B, var);

+ −λ5 λ3 2 λ4



Example 2:


> var := [x,y];

 := var [ ],x y
> L := [x^2*y-y^2, x^2*y^2];



 := L [ ],−x2 y y2 x2 y2

> B := InvolutiveBasis(L, var);

 := B [ ], ,y3 −x2 y y2 xy3

> FactorModuleBasis(var);

+ + + + + +1
x2

−1 x
x xy xy2 y y2

> PolMinPoly(x*y, B, var);

λ2



Example 3:


> var := [a,b];

 := var [ ],a b
> L2 := [a*b-b, a+b^2];

 := L2 [ ],−a b b +a b2

> B2 := InvolutiveBasis(L2, var);

 := B2 [ ], ,+a b2 −a b b −a2 a
> FactorModuleBasis(var);

[ ], ,1 b a
> PolMinPoly(a, B2, var, "var"=X);

−X2 X
> PolMinPoly(a, B2, var, "subs"=X+Y);

− −( )+X Y 2 X Y
> B3 := InvolutiveBasis([a^31], [a]);

 := B3 [ ]a31

> PolMinPoly(a, B3, [a]);
Error, (in Involutive/PolMinPoly) stopped calculation of minimal polynomial since upper bound for the degree is 
reached.
> PolMinPoly(a, B3, [a], "var"=lambda, "degree"=40);

λ31

See Also:
InvolutiveBasis, FactorModuleBasis, PolTabVar, PolRepres, CoeffList, PolHilbertSeries.




Involutive[PolParametrization] -  return a matrix whose rows generate a module whose syzygy module equals a given 

module over a polynomial ring

Calling Sequence:
     PolParametrization(L,var)

Parameters:
  L     - list (of lists of the same length) of polynomials or matrix with polynomial entries
  var   - list of variables of the polynomial ring

Description:

• PolParametrization returns a polynomial matrix M such that the module generated by L over the polynomial ring with indeterminates 

var is the syzygy module of the module generated by the rows of M.

• The entries of L are polynomials in case of an ideal, i. e. a submodule of the free module of rank one, or lists of polynomials of length 

m, representing elements of the free module of m-tuples over the polynomial ring. If L is a matrix, then the generators are extracted 
from the rows of L.

• The result of PolParametrization is a matrix M such that the product of the matrix composed of the rows of L by M is a zero matrix. 

Moreover, the columns of M generate the kernel of the linear map of column vectors with polynomial entries which is defined by L. In 
this sense, the result of PolParametrization parametrizes the kernel of this linear map.

Examples:
> with(Involutive):


Example 1:


> var := [x,y,z];

 := var [ ], ,x y z
> L1 := [[x,y,z]];

 := L1 [ ][ ], ,x y z
> L2 := PolParametrization(L1, var);

 := L2













−y −z 0

x 0 −z

0 x y
> L3 := PolParametrization(L2, var);

 := L3













z

−y

x
> evalm(L1 &* L2);

[ ]0 0 0
> evalm(L2 &* L3);













0

0

0


Example 2:




> var := [x,y];

 := var [ ],x y
> L := [[y, x*y, 0], [y, 0, y^2]];

 := L [ ],[ ], ,y xy 0 [ ], ,y 0 y2

> PolParametrization(L, var);













−xy

y

x

See Also:
InvolutiveBasis, PolInvReduce, Syzygies, SyzygyModule, PolResolution, PolSubFactor, PolSyzOp, PolKernel, PolHom, PolHomHom, 
PolExt1, PolExtn, PolTorsion, Parametrization.




Involutive[PolRepres] -  matrix representation with respect to a factor module basis

Calling Sequence:
     PolRepres(m,B,var,FB,ord,mode)

Parameters:
 m    -   polynomial in var
 B    -   Janet basis 
 var  -   list of variables (of the polynomial ring)
 FB   -   factor module basis given as list of monomials or generating function
 ord  -   (optional) change of monomial ordering
 mode -   (optional) string specifying options for the computation

Description:

• PolRepres returns the matrix (in column convention) of the multiplication of m on the free module over the polynomial ring of 
appropriate rank modulo the submodule generated by the Janet basis B. The matrix is written with respect to the ground field basis FB 
usually computed with the command FactorModuleBasis.

• Note, the ground field is allowed to be the field of complex numbers or the field of rational functions (in one or several variables) over 
it.

• If FB is a list, i.e. the factor module basis is finite, then the resulting matrix has shape n x n, where n is the length of the factor module 
basis, and it has entries in the ground field.

• If FB is given as generating function, i.e. FB is the sum of the monomials according to a disjoint cone decomposition of the standard 

monomials of the factor module, then an entry in the i-th row of the resulting matrix is a polynomial in the multiplicative variables for 
the i-th cone of the factor module basis (in the order given by FactorModuleBasis(var, "C")). The number of rows and the number of 
columns equal the number of cones in this case.

• If the Janet basis B has been computed with respect to a monomial ordering different from the default one (see InvolutiveBasis), then 
the argument ord is expected to be the same as the one given to the previous call of InvolutiveBasis. Otherwise leading monomials 
might be determined incorrectly, resulting in an error message of PolRepres when the normal form of an m-multiple of an element of 
FB is not expressible as linear combination in terms of FB (cf. Example 4 below).

• The optional parameter mode may occur repeatedly. It may be equal to the string "S" or to the string "listlist".

• If mode equals "S", then PolRepres uses simplify instead of expand in the normal form procedure.

• If mode equals "listlist", then the resulting matrix is returned as a listlist.

• For more information about disjoint cone decompositions of the factor module, see W. Plesken, D. Robertz, "Janet’s approach to 
presentations and resolutions for polynomials and linear pdes", Archiv der Mathematik, 84(1), 2005, 22-37.

Examples:
> with(Involutive):


Example 1:


> var := [x,y];

 := var [ ],x y
> L := [x^2-2*y, x*y^2-y^2];

 := L [ ],−x2 2 y −xy2 y2

> B := InvolutiveBasis(L, var);

 := B






, ,−x2 2 y − +

1

2
y2 y3 −xy2 y2

> FB := FactorModuleBasis(var);



 := FB [ ], , , ,1 y x y2 xy
> Mx := PolRepres(x, B, var, FB);

 := Mx













0 0 0 0 0

0 0 2 0 0

1 0 0 0 0

0 0 0 1 2

0 1 0 0 0
> My := PolRepres(y, B, var, FB);

 := My













0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 1 0
1

2
1

0 0 1 0 0
> linalg[minpoly](My, lambda);

− +
1

2
λ2 λ3

> PolMinPoly(y, B, var);

− +
1

2
λ2 λ3



Example 2:  Computations over a field of rational functions


> var := [x,y];

 := var [ ],x y
> L := [y*x^2+y^2+z^2-1, y^2+z^2-1];

 := L [ ],+ + −yx2 y2 z2 1 + −y2 z2 1
> B := InvolutiveBasis(L, var);

 := B [ ], ,+ −y2 z2 1 x2 +( )−z2 1 x xy2

> FB := FactorModuleBasis(var);

 := FB [ ], , ,1 y x xy
> Mx := PolRepres(x, B, var, FB);

 := Mx













0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0
> My := PolRepres(y, B, var, FB);

 := My













0 − +z2 1 0 0

1 0 0 0

0 0 0 − +z2 1

0 0 1 0


Example 3:  Matrix representation with respect to an infinite basis


> var := [x,y];



 := var [ ],x y
> L := [x^2*y-x, x*y^2-y];

 := L [ ],−yx2 x −xy2 y
> B := InvolutiveBasis(L, var);

 := B [ ],−xy2 y −yx2 x
> FB := FactorModuleBasis(var);

 := FB + + +
1

−1 y

x2

−1 x
x xy

> FactorModuleBasis(var, "C");

[ ], , ,1 x xy x2

> PolRepres(x, B, var, FB);













0 0 0 0

1 0 1 0

0 0 0 0

0 1 0 x
> PolRepres(y, B, var, FB);













y 0 y 0

0 0 0 1

0 1 0 0

0 0 0 0


Example 4:  Using a monomial ordering which is not the default one


> var := [x,y];

 := var [ ],x y
> L := [x^2+y^2, x^3-y];

 := L [ ],+x2 y2 −x3 y
> B := InvolutiveBasis(L, var, 1);

 := B [ ], ,+y5 y − +y4 xy +x2 y2

> FB := FactorModuleBasis(var);

 := FB [ ], , , , ,1 y x y2 y3 y4

> PolRepres(x, B, var, FB);
Error, (in Involutive/PolRepres) the given vector space basis is not the factor module basis for the residue class 
module under consideration.


> PolRepres(x, B, var, FB, 1);













0 0 0 0 0 0

0 0 0 -1 0 0

1 0 0 0 0 0

0 0 -1 0 -1 0

0 0 0 0 0 -1

0 1 0 0 0 0


Example 5:  Matrix representation with respect to an infinite basis of tuples


> var := [x,y];

 := var [ ],x y
> L := [[y*x^2+y^2+z^2-1, x], [y, y^2+z^2-1]];

 := L [ ],[ ],+ + −yx2 y2 z2 1 x [ ],y + −y2 z2 1



> B := InvolutiveBasis(L, var);

 := B [ ],[ ],y + −y2 z2 1 [ ],+ + −yx2 y2 z2 1 x
> FB := FactorModuleBasis(var);

 := FB








,+ +

x2

−1 x

x

−1 y

1

−1 y
+

y

−1 x

1

−1 x
> FactorModuleBasis(var, "C");

[ ], , , ,[ ],0 1 [ ],0 y [ ],1 0 [ ],x 0 [ ],x2 0
> Mx := PolRepres(x, B, var, FB);

 := Mx













x 0 0 0 0

0 x 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 x
> My := PolRepres(y, B, var, FB);

 := My













0 − +z2 1 0 0 −x

1 0 0 0 0

0 −y y 0 − − +y2 z2 1

0 0 0 y 0

0 0 0 0 0

See Also:
InvolutiveBasis, FactorModuleBasis, PolTabVar, PolHilbertSeries, PolMinPoly, CoeffList.




Involutive[PolResolution] -  return free resolution of a factor module of a free module over a polynomial ring

Calling Sequence:
     PolResolution(L,var,mode,tr)

Parameters:
 L    - list (or matrix) of generators of the submodule

 var  - list of variables (of the polynomial ring)
 mode - (optional) string specifying options for the computation and the type of information to be returned
 tr   - (optional) positive integer (truncate resolution to length tr)

Description:

• PolResolution computes a free resolution of R^m/<L> by first computing the minimal Janet basis for <L>, say of k(1) elements. These 

elements are given in form of a matrix representing a homomorphism R^k(1) -> R^m with cokernel R^m/<L>. It then computes a 

generating set L(1) of the kernel of this homomorphism and proceeds with R^k(1) and L(1) in the same way as it did with R^m and L. It 
terminates once the kernel is trivial.

• As optional third parameter a string consisting of letters "C", "D", "G", "M", "O", and "S" is accepted that does not contain "D" and 
"M" at the same time.

• If mode contains the letter "M", then the output is the list of matrices that were computed as kernels of the above homomorphisms (in 
the reversed order they were constructed). This is the default mode. If mode contains the letter "D", then the output is the list 

containing lists of integers [[d ,r 1, ..., d ,r n
r
], ..., [d ,1 1, ..., d ,1 n

1
]], where d ,i j is the degree of the j-th generator (row in matrix) of the i-th free 

module in the free resolution.

• Note, for matrices the row convention is used, i. e. R^m is identified with R^{1 x m} and the matrices are multiplied to rows from the 
right.

• If the letter "O" is present in mode, minimal Groebner bases are computed instead of minimal Janet bases in each step.

• If mode contains the letter "G", then the first matrix (i.e. the last one in the output) is formed using the given generating set L, i.e. the 
computation of a Janet basis is suppressed in the first step. If also the letter "C" is present in mode, then the minimal Janet basis is still 
computed in the first step and the first matrix is formed using the smaller generating set of L and its minimal Janet basis.

• If the letter "S" is present in mode, the program uses simplify instead of expand in the normal form procedure. If the polynomials in 
the input L contain nonrational coefficients, more precisely, if the ground field contains algebraic elements over the rationals (RootOf
), then simplify is used instead of expand automatically.

• If the optional parameter tr is supplied, PolResolution stops after having computed tr kernels as described above.

• For more information about Janet bases and resolutions, see W. Plesken, D. Robertz, "Janet’s approach to presentations and 
resolutions for polynomials and linear pdes", Archiv der Mathematik, 84(1), 2005, 22-37.

Examples:
> with(Involutive):


Example 1:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+y+z, x*y+y*z+z*x, x*y*z-1];

 := L [ ], ,+ +x y z + +xy yz z x −xyz 1
> InvolutiveBasis(L, var);

[ ], , ,+ +x y z + +y2 yz z2 − +1 z3 − +y z3 y
> PolTabVar();



[ ], ,+ +x y z [ ], ,x y z x

[ ], ,+ +y2 yz z2 [ ], ,* y z y2

[ ], ,− +1 z3 [ ], ,* * z z3

[ ], ,− +y z3 y [ ], ,* * z z3 y
> PolResolution(L, var);













, ,












1 +z x 1 −y 0

x −z2 − −y z −z2 − +1 z3













0 −1 z3 z2 +y z

0 0 y -1

−y z3 y − +1 z3 −z2 x

−1 z3 0 +z x 1

− − −y2 yz z2 + +x y z 0 0













+ +x y z

+ +y2 yz z2

− +1 z3

− +y z3 y

> PolResolution(L, var, "D");

[ ], ,[ ],5 6 [ ], , , ,5 4 5 4 3 [ ], , ,1 2 3 4
> PolResolution(L, var, "O");













, ,[ ]− +1 z3 + +x y z − − −y2 yz z2













+ +y2 yz z2 − − −x y z 0

0 − +1 z3 − − −y2 yz z2

− +1 z3 0 − − −x y z













+ +x y z

+ +y2 yz z2

− +1 z3

> PolResolution(L, var, "DO");

[ ], ,[ ]6 [ ], ,3 5 4 [ ], ,1 2 3
> r := PolResolution(L, var, "G");

 := r













, ,












1 −z2 +y z -1

y − + −yz2 z3 1 −z2 +z x













0 −xyz 1 − − −xy yz z x

+ +xy yz z x − − −x y z 0

+ +xz2 yz2 1 − − −z x yz z2 + +x y z

+ +y2 z2 y z − − −1 y2 z yz2 + +y2 yz z2













+ +x y z

+ +xy yz z x

−xyz 1

> map(expand, evalm(r[1] &* r[2])); map(expand, evalm(r[2] &* r[3]));













0 0 0

0 0 0













0

0

0

0


Example 2:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x^2,y^2,z^2];

 := L [ ], ,x2 y2 z2

> PolResolution(L, var, "G");













, ,












−x2 0 −z2 y

0 y 0 -1













0 z2 −y2

z2 0 −x2

y2 −x2 0

yz2 0 −x2 y













x2

y2

z2



> PolResolution(L, var, "G", 1);













,













0 z2 −y2

z2 0 −x2

y2 −x2 0

yz2 0 −x2 y













x2

y2

z2

See Also:
InvolutiveBasis, PolTabVar, PolInvReduce, Syzygies, SyzygyModule, PolShorterResolution, PolShortestResolution, PolResolutionDim, 
PolEulerChar.




Involutive[PolResolutionDim] -  return ranks of the free modules in a free resolution of a factor module of a free 

module over a polynomial ring

Calling Sequence:
     PolResolutionDim(L,var,tr)

Parameters:
 L    - list (or matrix) of generators of the submodule

 var  - list of variables (of the polynomial ring)
 tr   - (optional) positive integer (truncate resolution to length tr)

Description:

• PolResolutionDim returns the list of ranks of the free modules over the polynomial ring in the variables var occurring in the free 
resolution constructed by PolResolution applied to L.

• The ranks of the free modules are computed from the number of non-multiplicative variables for the elements in the Janet basis of L. 

Therefore, in contrast to PolResolution, only one involutive basis computation has to be performed. The rank of the domain of the i-th 
homomorphism computed by PolResolution (represented by the last but i-th matrix in its resulting list) equals the sum over j, of the 
number of possible choices of i variables from the set of non-multiplicative variables of the j-th element of the Janet basis of L.

• The entries of L are polynomials in case of an ideal, i.e. a submodule of the free module of rank one, or lists of polynomials of length 

m, representing elements of the free module of m-tuples over the polynomial ring. If L is a matrix, then the generators are extracted 
from the rows of L.

• If the optional parameter tr is supplied, PolResolutionDim returns only the list of ranks of the first (tr+1) free modules constructed 
by PolResolution.

• The result of PolResolutionDim is a list of positive integers. The last integer in the resulting list equals 1 if L generates an ideal in the 
polynomial ring in the variables var; otherwise L generates a submodule of a free modules of tuples over this polynomial ring in 

which case the last integer equals the length of these tuples. For i greater than 1, the last but i-th entry in the result of 
PolResolutionDim equals the rank of the domain of the ( −i 1)-th homomorphism computed by PolResolution (represented by the last 
but ( −i 1)-th matrix in the result of PolResolution).

• For more information about Janet bases and resolutions, see W. Plesken, D. Robertz, "Janet’s approach to presentations and 
resolutions for polynomials and linear pdes", Archiv der Mathematik, 84(1), 2005, 22-37.

Examples:
> with(Involutive):


Example 1:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+y+z, x*y+y*z+z*x, x*y*z-1];

 := L [ ], ,+ +x y z + +xy yz z x −xyz 1
> InvolutiveBasis(L, var);

[ ], , ,+ +x y z + +y2 yz z2 − +1 z3 − +y z3 y
> PolTabVar();

[ ], ,+ +x y z [ ], ,x y z x

[ ], ,+ +y2 yz z2 [ ], ,* y z y2

[ ], ,− +1 z3 [ ], ,* * z z3

[ ], ,− +y z3 y [ ], ,* * z z3 y
> PolResolutionDim(L, var);



[ ], , ,2 5 4 1
> PolEulerChar(L, var);

0
> PolResolution(L, var);













, ,












1 +z x 1 −y 0

x −z2 − −y z −z2 − +1 z3













0 −1 z3 z2 +y z

0 0 y -1

−y z3 y − +1 z3 −z2 x

−1 z3 0 +z x 1

− − −y2 yz z2 + +x y z 0 0













+ +x y z

+ +y2 yz z2

− +1 z3

− +y z3 y

> PolResolutionDim(L, var, 2);

[ ], ,5 4 1


Example 2:


> var := [x,y];

 := var [ ],x y
> L := [[x^2-y,y^2,0],[x,y,x]];

 := L [ ],[ ], ,−x2 y y2 0 [ ], ,x y x
> PolResolutionDim(L, var);

[ ], ,1 3 3
> PolEulerChar(L, var);

1
> PolResolution(L, var);













,[ ]-1 x −y













0 − −x2 y y2 x y2 −x3 xy

y −xy y2 x2

x y x

See Also:
InvolutiveBasis, PolTabVar, PolInvReduce, Syzygies, SyzygyModule, PolResolution, PolShorterResolution, PolShortestResolution, 
PolEulerChar.




Involutive[PolRightInverse] -  compute right inverse of a polynomial matrix

Calling Sequence:
     PolRightInverse(M,var)

Parameters:
 M    -  matrix of polynomials in var or list of lists of the same length of polynomials in var
 var  -  list of variables (of the polynomial ring)

Description:

• PolRightInverse computes (if possible) a right inverse of the polynomial matrix M, i.e. a polynomial matrix R such that the product of 

M by R is the identity matrix.

• The first parameter M is expected to be a matrix whose entries are polynomials in the variables var or a list of lists of polynomials in 
var, where each list is of the same length. In the second case, PolRightInverse forms a matrix by taking the lists in M as rows and 
computes a right inverse of this matrix.

• If no right inverse of M exists, PolRightInverse returns FAIL.

• If a right inverse R of M exists, PolRightInverse returns such an R as a matrix if M is a matrix, or returns the list of the rows of R if M is a 
list as explained above.

• Left inverses of polynomial matrices are computed by PolLeftInverse.

Examples:
> with(Involutive):
In the first example we give the input as a matrix:
> M := matrix([[2*x^2, x^2, -1, 2*x^2], [4*x^2-2, 0, 0, 2*x^2], [0, x^2-1, 0, x^2]]);

 := M













2 x2 x2 -1 2 x2

−4 x2 2 0 0 2 x2

0 −x2 1 0 x2

> PolRightInverse(M, [x]);













0 − +
1

2
x2 −x2

0 2 x2 − −2 x2 1

-1 3 x2 −3 x2

0 − +2 x2 2 −2 x2 1
A list of lists of the same length of polynomials is also accepted and interpreted as the list of rows of a matrix:
> M := [[2*x^2, x^2, -1, 2*x^2], [4*x^2-2, 0, 0, 2*x^2], [0, x^2-1, 0, x^2]];

 := M [ ], ,[ ], , ,2 x2 x2 -1 2 x2 [ ], , ,−4 x2 2 0 0 2 x2 [ ], , ,0 −x2 1 0 x2

> PolRightInverse(M, [x]);







, , ,







, ,0 − +

1

2
x2 −x2 [ ], ,0 2 x2 − −2 x2 1 [ ], ,-1 3 x2 −3 x2 [ ], ,0 − +2 x2 2 −2 x2 1

Substitute y for x in the second row of the matrix in the preceding example and consider y as a parameter, i.e. as element of the ground 
field:
> M := matrix([[2*x^2, x^2, -1, 2*x^2], [4*y^2-2, 0, 0, 2*y^2], [0, x^2-1, 0, x^2]]);



 := M













2 x2 x2 -1 2 x2

−4 y2 2 0 0 2 y2

0 −x2 1 0 x2

> PolRightInverse(M, [x]);













0
1

2

1

−2 y2 1
−

y2

−2 y2 1

0 0 -1

-1
x2

−2 y2 1
−

x2

−2 y2 1

0 0 1
If M is considered as a polynomial matrix in the variables x and y, then M has no right inverse:
> PolRightInverse(M, [x,y]);

FAIL

See Also:
InvolutiveBasis, PolTabVar, PolInvReduce, PolLeftInverse, AddRhs.




Involutive[PolShorterResolution] -  shorten (if possible) a free resolution of a finitely presented module over a 

polynomial ring

Calling Sequence:
     PolShorterResolution(F,var)

Parameters:
 F    - list of matrices whose entries are polynomials in var

 var  - list of variables (of the polynomial ring)

Description:

• Given a (finite) free resolution of a finitely presented module over the polynomial ring in the variables var, PolShorterResolution 
tries to construct a shorter free resolution of the same module. This is possible whenever the last homomorphism between free 
modules in this free resolution admits a right inverse (see PolRightInverse).

• If the length m of the free resolution given by F is at least 3 and if the last morphism Rm between free modules given in F admits a right 

inverse Sm, then a shorter free resolution is obtained by removing the last free module, augmenting the last but first morphism R −m 1 

with Sm, i.e. replacing it by (R −m 1 Sm), and replacing the last but second morphism R −m 2 by the transpose of (R −m 2 0) in a compatible 
way (note also that the last but second free module in the given free resolution must be adjusted).

• If the length m of the free resolution given by F equals 2 and if the last morphism R2 between free modules given in F admits a right 

inverse S2, then a presentation of the module resolved by F is obtained by removing the last free module and augmenting the last but 

first morphism R1 with S2, i.e. by defining the presentation matrix (R1 S2).

• If the length m of the free resolution given by F is less than 2, then PolShorterResolution returns F.

• F is a list of matrices representing a free resolution of a finitely presented module over the polynomial ring in the variables var. Most 
commonly, F is the result of PolResolution.

• The result of PolShorterResolution is of the same format as the input F, i.e. a list representing a free resolution of the finitely 
presented module, which is shorter than the given one or equals the given one.

• The procedure described above can be iterated using the command PolShortestResolution.

• For more details, see A. Quadrat, D. Robertz, "Computation of bases of free modules over the Weyl algebras", Journal of Symbolic 
Computation 42 (11-12), 2007, pp. 1113-1141.

Examples:
> with(Involutive):


Example:


(see J.-F. Pommaret, Partial Differential Equations and Group Theory: New Perspectives for Applications Kluwer, 1994, p. 162)
> var := [D1,D2,D3];

 := var [ ], ,D1 D2 D3
> R := [1,D1,D2,D3];

 := R [ ], , ,1 D1 D2 D3
> F1 := PolResolution(R, var, "G");



 := F1













, , ,[ ]D1 -1 D3 −D2













-1 0 0 D2 −D3 0

−D1 D2 −D3 0 0 0

0 0 -1 0 D1 −D2

0 -1 0 D1 0 −D3













0 0 D3 −D2

0 D3 0 −D1

0 D2 −D1 0

D3 0 0 -1

D2 0 -1 0

D1 -1 0 0













1

D1

D2

D3

> F2 := PolShorterResolution(F1, var);

 := F2













, ,













-1 0 0 D2 −D3 0 0

−D1 D2 −D3 0 0 0 -1

0 0 -1 0 D1 −D2 0

0 -1 0 D1 0 −D3 0













0 0 D3 −D2

0 D3 0 −D1

0 D2 −D1 0

D3 0 0 -1

D2 0 -1 0

D1 -1 0 0

0 0 0 0













1

D1

D2

D3

> F3 := PolShorterResolution(F2, var);

 := F3













,













0 0 D3 −D2 -1 0 0 0

0 D3 0 −D1 0 0 0 -1

0 D2 −D1 0 0 0 -1 0

D3 0 0 -1 0 0 0 0

D2 0 -1 0 0 0 0 0

D1 -1 0 0 0 0 0 0

0 0 0 0 D1 -1 D3 −D2













1

D1

D2

D3

0

0

0

0
> F4 := PolShorterResolution(F3, var);

 := F4

























1 0 0 0 0 0 0 0

D1 0 0 0 0 0 -1 0

D2 0 0 0 0 -1 0 0

D3 0 0 0 -1 0 0 0

0 -1 0 0 D2 −D3 0 0

0 −D1 D2 −D3 0 0 0 -1

0 0 0 -1 0 D1 −D2 0

0 0 -1 0 D1 0 −D3 0
> PolShorterResolution(F4, var);



























1 0 0 0 0 0 0 0

D1 0 0 0 0 0 -1 0

D2 0 0 0 0 -1 0 0

D3 0 0 0 -1 0 0 0

0 -1 0 0 D2 −D3 0 0

0 −D1 D2 −D3 0 0 0 -1

0 0 0 -1 0 D1 −D2 0

0 0 -1 0 D1 0 −D3 0
Hence, it was possible to reduce the length of the free resolution represented by F1 in each step, finally arriving at a free resolution of 
length 1. These steps can be done at once by calling PolShortestResolution:
> F := PolShortestResolution(F1, var);

 := F

























1 0 0 0 0 0 0 0

D1 0 0 0 0 0 -1 0

D2 0 0 0 0 -1 0 0

D3 0 0 0 -1 0 0 0

0 -1 0 0 D2 −D3 0 0

0 −D1 D2 −D3 0 0 0 -1

0 0 0 -1 0 D1 −D2 0

0 0 -1 0 D1 0 −D3 0
In fact, the module presented by R is stably free because a right inverse of the presentation matrix obtained by PolShortestResolution 
admits a right inverse:
> PolRightInverse(F[1], var);













1 0 0 0 0 0 0 0

0 0 D3 −D2 -1 0 0 0

0 D3 0 −D1 0 0 0 -1

0 D2 −D1 0 0 0 -1 0

D3 0 0 -1 0 0 0 0

D2 0 -1 0 0 0 0 0

D1 -1 0 0 0 0 0 0

0 0 0 0 D1 -1 D3 −D2

See Also:
InvolutiveBasis, PolTabVar, PolInvReduce, Syzygies, SyzygyModule, PolResolution, PolShortestResolution, PolResolutionDim, 
PolEulerChar.




Involutive[PolShortestResolution] -  return a shortest free resolution of a finitely presented module over a 

polynomial ring

Calling Sequence:
     PolShortestResolution(F,var)

Parameters:
 F    - list of matrices whose entries are polynomials in var

 var  - list of variables (of the polynomial ring)

Description:

• PolShortestFreeResolution iterates the application of PolShorterResolution to a (finite) free resolution of a finitely presented module 
over the polynomial ring in the variables var and returns a free resolution of the same module which cannot be shortened in this way 
anymore.

• F is either a matrix with polynomial entries or a list of matrices representing a free resolution of a finitely presented module over the 
polynomial ring in the variables var. In the first case, a free resolution of the module presented by F is computed first. In the second 
case, most commonly, F is the result of PolResolution. Then, in both cases, PolShorterResolution is applied repeatedly to the 
resolution until PolShorterResolution does not change the resolution anymore.

• The result of PolShortestFreeResolution is a list representing a free resolution of the finitely presented module.

• For more details, see A. Quadrat, D. Robertz, "Computation of bases of free modules over the Weyl algebras", Journal of Symbolic 
Computation 42 (11-12), 2007, pp. 1113-1141.

Examples:
> with(Involutive):


Example:


(see J.-F. Pommaret, Partial Differential Equations and Group Theory: New Perspectives for Applications Kluwer, 1994, p. 162)
> var := [D1,D2,D3];

 := var [ ], ,D1 D2 D3
> R := [1,D1,D2,D3];

 := R [ ], , ,1 D1 D2 D3
> F1 := PolResolution(R, var, "G");

 := F1













, , ,[ ]D1 -1 D3 −D2













-1 0 0 D2 −D3 0

−D1 D2 −D3 0 0 0

0 0 -1 0 D1 −D2

0 -1 0 D1 0 −D3













0 0 D3 −D2

0 D3 0 −D1

0 D2 −D1 0

D3 0 0 -1

D2 0 -1 0

D1 -1 0 0













1

D1

D2

D3

> F2 := PolShorterResolution(F1, var);



 := F2













, ,













-1 0 0 D2 −D3 0 0

−D1 D2 −D3 0 0 0 -1

0 0 -1 0 D1 −D2 0

0 -1 0 D1 0 −D3 0













0 0 D3 −D2

0 D3 0 −D1

0 D2 −D1 0

D3 0 0 -1

D2 0 -1 0

D1 -1 0 0

0 0 0 0













1

D1

D2

D3

> F3 := PolShorterResolution(F2, var);

 := F3













,













0 0 D3 −D2 -1 0 0 0

0 D3 0 −D1 0 0 0 -1

0 D2 −D1 0 0 0 -1 0

D3 0 0 -1 0 0 0 0

D2 0 -1 0 0 0 0 0

D1 -1 0 0 0 0 0 0

0 0 0 0 D1 -1 D3 −D2













1

D1

D2

D3

0

0

0

0
> F4 := PolShorterResolution(F3, var);

 := F4

























1 0 0 0 0 0 0 0

D1 0 0 0 0 0 -1 0

D2 0 0 0 0 -1 0 0

D3 0 0 0 -1 0 0 0

0 -1 0 0 D2 −D3 0 0

0 −D1 D2 −D3 0 0 0 -1

0 0 0 -1 0 D1 −D2 0

0 0 -1 0 D1 0 −D3 0
> PolShorterResolution(F4, var);

























1 0 0 0 0 0 0 0

D1 0 0 0 0 0 -1 0

D2 0 0 0 0 -1 0 0

D3 0 0 0 -1 0 0 0

0 -1 0 0 D2 −D3 0 0

0 −D1 D2 −D3 0 0 0 -1

0 0 0 -1 0 D1 −D2 0

0 0 -1 0 D1 0 −D3 0



Hence, it was possible to reduce the length of the free resolution represented by F1 in each step, finally arriving at a free resolution of 
length 1. These steps can be done at once by calling PolShortestResolution:
> F := PolShortestResolution(F1, var);

 := F

























1 0 0 0 0 0 0 0

D1 0 0 0 0 0 -1 0

D2 0 0 0 0 -1 0 0

D3 0 0 0 -1 0 0 0

0 -1 0 0 D2 −D3 0 0

0 −D1 D2 −D3 0 0 0 -1

0 0 0 -1 0 D1 −D2 0

0 0 -1 0 D1 0 −D3 0
In fact, the module presented by R is stably free because a right inverse of the presentation matrix obtained by PolShortestResolution 
admits a right inverse:
> PolRightInverse(F[1], var);













1 0 0 0 0 0 0 0

0 0 D3 −D2 -1 0 0 0

0 D3 0 −D1 0 0 0 -1

0 D2 −D1 0 0 0 -1 0

D3 0 0 -1 0 0 0 0

D2 0 -1 0 0 0 0 0

D1 -1 0 0 0 0 0 0

0 0 0 0 D1 -1 D3 −D2

See Also:
InvolutiveBasis, PolTabVar, PolInvReduce, Syzygies, SyzygyModule, PolResolution, PolShorterResolution, PolResolutionDim, 
PolEulerChar.




Involutive[PolSubFactor] -  return presentation of a subfactor of a finitely presented module over a polynomial ring

Calling Sequence:
     PolSubFactor(L1,L2,var,v)

Parameters:
  L1    - list (of lists of the same length) of polynomials or matrix with polynomial entries

  L2    - list (of lists of the same length) of polynomials or matrix with polynomial entries
  var   - list of variables of the polynomial ring
  v     - (optional) name of the indeterminate for the Hilbert series of the subfactor (default: ’s’)

Description:

• PolSubFactor returns a presentation of the epimorphic image of the sum of the modules generated by L1 and L2 in the module 

presented by L2. This is a subfactor module of the factor module given by the free module of m-tuples over the polynomial ring in 

var modulo the submodule generated by L2, where m is the common length of the lists resp. rows in L1 and L2. In many situations 
the module generated by L2 is a submodule of the module generated by L1. Then PolSubFactor returns a presentation of the module 
generated by the residue classes represented by the entries of L1 in the module presented by L2.

• The entries of L1 and L2 are polynomials in case of ideals, i.e. submodules of the free module of rank one, or lists of polynomials of 

length m, representing elements of the free module of m-tuples over the polynomial ring. In the latter case, the lists in L1 and L2 must 
be of the same length. If L1 or L2 is a matrix, then the generators are extracted from the rows of L1 resp. L2.

• The result of PolSubFactor is a list with four entries. The first one defines the abstract generators of the constructed presentation of 
the subfactor module in terms of representatives of residue classes in the given subfactor module. The second entry is a list of the 
relations imposed on the abstract generators of the presentation. Finally, the third and the fourth entry of the result give the Hilbert 
series (see PolHilbertSeries) resp. the Cartan characters (see PolCartanCharacter) of the subfactor module.

• The first entry of the result is a list of equations, where the left hand sides are standard basis vectors in their canonical order, i.e. lists 
having exactly one entry equal to 1, the other entries being 0. The common length of these lists is the number of abstract generators in 
the presentation to be defined, and the left hand side of the ith equation is the ith standard basis vector. The right hand side of the ith 
equation gives a representative of the residue class in the subfactor module generated by the residue classes of the sum of the modules 
generated by L1 and L2 in the factor module presented by L2 which corresponds to the ith abstract generator. Hence, the subfactor 
module is generated by the set of right hand sides in this first entry modulo the module generated by L2.

• The second entry of the result is a list of polynomials if the constructed presentation involves only one abstract generator and a list of 
lists of polynomials of the same length if there are more than one abstract generator. In the latter case, the common length of these 
lists equals the number of abstract generators. If the constructed presentation involves only one abstract generator, then the 
polynomials in this second list of the result generate the annihilator of this single generator in the polynomial ring. More generally in 
the case of several abstract generators, the lists of polynomials correspond to linear combinations of the abstract generators, where the 
coefficient of the ith generator is the ith polynomial in the list. All these linear combinations then generate all relations of the abstract 
generators, i.e. generate the submodule N of the free module M over the polynomial ring with indeterminates var, where the rank of M 

equals the number of abstract generators, such that the given subfactor module is isomorphic to the factor module M / N.

• The third entry of the result is the Hilbert series (according to standard degrees) of the given subfactor module, see PolHilbertSeries.

• The optional fourth argument to PolSubFactor selects the name of the indeterminate for the Hilbert series. The default name is ’s’ 
which cannot be affected by a subs command.

• The fourth entry of the result is the list of Cartan characters of the given subfactor module as defined in PolCartanCharacter.

Examples:
> with(Involutive):
> var := [x];

 := var [ ]x
> PolSubFactor([x], [x^2], var);



[ ], , ,[ ]=[ ]1 [ ]x [ ]x 1 [ ]0
> PolSubFactor([1], [x], var);

[ ], , ,[ ]=[ ]1 [ ]1 [ ]x 1 [ ]0
> var := [x,y];

 := var [ ],x y
> PolSubFactor([[x^3+y^3, x^2]], [[x^4, 0], [0, x^4]], var);









, , ,[ ]=[ ]1 [ ],+x3 y3 x2 [ ]x4 + + + +1 2 s 3 s2 4 s3 4

s4

−1 s
[ ],4 0

> PolSubFactor([x^3+y^2,x^2+1], [y^2,x^4], var, lambda);

[ ], , ,[ ],=[ ],1 0 [ ]x3 =[ ],0 1 [ ]+x2 1 [ ], , , , ,[ ],x 0 [ ],0 y2 [ ],y2 0 [ ],0 y2 x [ ],-1 x3 [ ],0 y2 x2 + + +2 3 λ 2 λ2 λ3 [ ],0 0

See Also:
InvolutiveBasis, PolInvReduce, PolHilbertSeries, Syzygies, PolResolution, PolKernel, PolHom, PolHomHom, PolExt1, PolExtn, 
PolTorsion, PolParametrization, PolSyzOp.




Involutive[PolSyzOp] -  return a matrix whose rows generate the syzygy module of a finitely presented module over a 
polynomial ring

Calling Sequence:
     PolSyzOp(L,var)

Parameters:
  L     - list (of lists of the same length) of polynomials or matrix with polynomial entries
  var   - list of variables of the polynomial ring

Description:

• PolSyzOp constructs a matrix whose rows generate the syzygy module of the module M presented by L (i.e., the elements of L are 

considered as elements of a free module over the polynomial ring with indeterminates var of appropriate rank and M is the factor 
module of this free module modulo the submodule that is generated by the elements of L). This matrix is constructed by computing 

the beginning of a free resolution of M using PolResolution. For more information about syzygies cf. also Syzygies.

• The entries of L are polynomials in case of an ideal, i. e. a submodule of the free module of rank one, or lists of polynomials of length 

m, representing elements of the free module of m-tuples over the polynomial ring in the indeterminates var. If L is a matrix, then the 
generators are extracted from the rows of L.

• The result of PolSyzOp is a matrix with polynomial entries such that the product of this matrix by the matrix whose rows are the 
entries in L is a zero matrix.

• The name of the command PolSyzOp is motivated by the corresponding command SyzOp in the package Janet.

Examples:
> with(Involutive):


Example 1:


> var := [x,y];

 := var [ ],x y
> S := PolSyzOp([x, y], var);

 := S [ ]−y x
> L := matrix([[x], [y]]);

 := L












x

y
> evalm(S &* L);

[ ]0


Example 2:


> var := [x,y,z];

 := var [ ], ,x y z
> L1 := matrix([[x], [y], [z]]);

 := L1













x

y

z
> L2 := PolSyzOp(L1, var);



 := L2













−y x 0

−z 0 x

0 −z y
> PolSyzOp(L2, var);

[ ]z −y x
> evalm(L2 &* L1);













0

0

0

See Also:
InvolutiveBasis, PolInvReduce, Syzygies, SyzygyModule, PolResolution, PolParametrization, PolHom, PolHomHom, PolExt1, PolExtn, 
PolTorsion, PolKernel, PolLeftInverse, PolRightInverse.




Involutive[PolTabVar] -  display Janet’s data, i. e. the generators, their leading monomials, multiplicative variables etc.

Calling Sequence:
     PolTabVar()

Parameters:
 -    -   none (assumes that the involutive basis has been computed before)


Description:

• PolTabVar displays the data constructed by InvolutiveBasis. Therefore it is necessary to call InvolutiveBasis first. The data structure 
is a list of lists each corresponding to an element of the Janet basis.

• In the ideal case the entries of each list are the basis polynomial, the list of multiplicative / non-multiplicative variables and the 
leading monomial. The variables occurring in the second entry are the multiplicative variables of the respective leading monomial. 
Non-multiplicative variables are represented by ’*’.

• In the module case the first entry is a list of polynomials representing an element of the free module of tuples over the polynomial 
ring, the second entry indicates multiplicative and non-multiplicative variables as above, the third entry is a list with first entry the 
leading monomial and second entry its position within the tuple.

Examples:
> with(Involutive):
> var := [x,y,z];

 := var [ ], ,x y z
> L := [x+y+z, x*y+y*z+z*x, x*y*z-1];

 := L [ ], ,+ +x y z + +xy yz z x −xyz 1
> InvolutiveBasis(L, var);

[ ], , ,+ +x y z + +y2 yz z2 −z3 1 −z3 y y
> PolTabVar();

[ ], ,+ +x y z [ ], ,x y z x

[ ], ,+ +y2 yz z2 [ ], ,* y z y2

[ ], ,−z3 1 [ ], ,* * z z3

[ ], ,−z3 y y [ ], ,* * z z3 y
Note some effects of the other monomial ordering:
> InvolutiveBasis(L, var, 1);

[ ], , ,−z3 1 −z3 y y + +y2 yz z2 + +x y z
> PolTabVar();

[ ], ,−z3 1 [ ], ,* * z z3

[ ], ,−z3 y y [ ], ,* * z z3 y

[ ], ,+ +y2 yz z2 [ ], ,* y z y2

[ ], ,+ +x y z [ ], ,x y z x
Note, right hand sides are displayed as well:
> L := [x+y+z=a, x*y+y*z+z*x=b, x*y*z-1=c];

 := L [ ], ,=+ +x y z a =+ +xy yz z x b =−xyz 1 c
> InvolutiveBasis(L, var);

[ ], , ,=+ +x y z a =+ +y2 yz z2 + −z a ya b =−z3 1 − +z2 a z b c =−z3 y y − +cy b z y a z2 y
> PolTabVar();

[ ], ,=+ +x y z a [ ], ,x y z x

[ ], ,=+ +y2 yz z2 + −z a ya b [ ], ,* y z y2

[ ], ,=−z3 1 − +z2 a z b c [ ], ,* * z z3

[ ], ,=−z3 y y − +cy b z y a z2 y [ ], ,* * z z3 y
For modules the output is slightly more involved:



> InvolutiveBasis([[x^2-1, 0], [x*y, x*y], [0, y^2-1]], [x,y]);

[ ], , , , ,[ ],0 −y2 1 [ ],xy xy [ ],y2 x2 [ ],−x2 1 0 [ ],−y3 y 0 [ ],0 − +x y2 x
> PolTabVar();

[ ], ,[ ],0 −y2 1 [ ],* y [ ],y2 2

[ ], ,[ ],xy xy [ ],* y [ ],xy 1

[ ], ,[ ],y2 x2 [ ],x y [ ],x2 2

[ ], ,[ ],−x2 1 0 [ ],x y [ ],x2 1

[ ], ,[ ],−y3 y 0 [ ],* y [ ],y3 1

[ ], ,[ ],0 − +x y2 x [ ],* y [ ],y2 x 2

See Also:
InvolutiveBasis, PolZeroSets, Stats, InvolutiveOptions, JanetGraph, PolInvReduce.




Involutive[PolTorsion] -  return torsion submodule of a finitely presented module over a polynomial ring

Calling Sequence:
     PolTorsion(L,var,v)

Parameters:
  L     - list (of lists of the same length) of polynomials or matrix with polynomial entries
  var   - list of variables of the polynomial ring
  v     - (optional) name of the indeterminate for the Hilbert series of the torsion submodule (default: ’s’)

Description:

• PolTorsion constructs a presentation of the torsion submodule of the module M presented by L (i.e., the elements of L are considered 

as elements of a free module over the polynomial ring with indeterminates var of appropriate rank and M is the factor module of this 
free module modulo the submodule that is generated by the elements of L).

• The entries of L are polynomials in case of an ideal, i.e. a submodule of the free module of rank one, or lists of polynomials of length 

m, representing elements of the free module of m-tuples over the polynomial ring. If L is a matrix, then the generators are extracted 
from the rows of L.

• The result of PolTorsion is a list with four entries. The first one defines the abstract generators of the constructed presentation of the 
torsion submodule in terms of representatives of residue classes in the given module. The second entry is a list of the relations 
imposed on the abstract generators of the presentation. Finally, the third and the fourth entry of the result give the Hilbert series (see 
PolHilbertSeries) resp. the Cartan characters (see PolCartanCharacter) of the torsion submodule.

• The first entry of the result is a list of equations, where the left hand sides are standard basis vectors in their canonical order, i.e. lists 
having exactly one entry equal to 1, the other entries being 0. The common length of these lists is the number of abstract generators in 
the presentation to be defined, and the left hand side of the ith equation is the ith standard basis vector. The right hand side of the ith 
equation gives a representative of the residue class in the torsion submodule which corresponds to the ith abstract generator. Hence, 
the torsion submodule is generated by the set of right hand sides in this first entry modulo L.

• The second entry of the result is a list of polynomials if the constructed presentation involves only one abstract generator and a list of 
lists of polynomials of the same length if there are more than one abstract generator. In the latter case, the common length of these 
lists equals the number of abstract generators. If the constructed presentation involves only one abstract generator, then the 
polynomials in this second list of the result generate the annihilator of this single generator in the polynomial ring. More generally in 
the case of several abstract generators, the lists of polynomials correspond to linear combinations of the abstract generators, where the 
coefficient of the ith generator is the ith polynomial in the list. All these linear combinations then generate all relations of the abstract 
generators, i.e. generate the submodule N of the free module M over the polynomial ring with indeterminates var, where the rank of M 

equals the number of abstract generators, such that the torsion submodule is isomorphic to the factor module M / N.

• The third entry of the result is the Hilbert series (according to standard degrees) of the torsion submodule, see PolHilbertSeries.

• The optional third argument to PolTorsion selects the name of the indeterminate for the Hilbert series. The default name is ’s’ which 
cannot be affected by a subs command.

• The fourth entry of the result is the list of Cartan characters of the torsion submodule as defined in PolCartanCharacter.

Examples:
> with(Involutive):


Example 1:


> var := [x];

 := var [ ]x
> L := [[x,1,1], [1,x,1]];

 := L [ ],[ ], ,x 1 1 [ ], ,1 x 1
> PolTorsion(L, var);



[ ], , ,[ ]=[ ]1 [ ], ,1 -1 0 [ ]−x 1 1 [ ]0
The torsion submodule is generated by the residue class modulo L which is represented by [ ], ,1 −1 0 , and this element is annihilated by 

−x 1. The dimension of the torsion submodule as a vector space is 1. Its Cartan character is 0.


Example 2:


> var := [x,y];

 := var [ ],x y
> L := [[y, x*y, 0], [y, 0, y^2]];

 := L [ ],[ ], ,y xy 0 [ ], ,y 0 y2

> PolTorsion(L, var);







, , ,[ ],=[ ],1 0 [ ], ,1 0 y =[ ],0 1 [ ], ,1 x 0 [ ],[ ],0 y [ ],y 0 +2 2

s

−1 s
[ ],2 0

The torsion submodule is generated by the residue classes modulo L which are represented by [ ], ,1 0 y , [ ], ,1 x 0 , and these elements are 

annihilated by y. The third entry of the result gives the Hilbert series of the torsion submodule, the fourth entry gives its Cartan 
characters. The indeterminate of the Hilbert series can be changed via the optional third argument:
> PolTorsion(L, var, lambda);







, , ,[ ],=[ ],1 0 [ ], ,1 0 y =[ ],0 1 [ ], ,1 x 0 [ ],[ ],0 y [ ],y 0 +2 2

λ
−1 λ

[ ],2 0



Example 3:


> var := [x,y];

 := var [ ],x y
> L := [[y+x, x*y+1, 0], [x, 0, y^2]];

 := L [ ],[ ], ,+y x +xy 1 0 [ ], ,x 0 y2

> PolTorsion(L, var);

[ ], , ,[ ]=[ ]1 [ ], ,0 0 0 [ ]1 0 [ ],0 0
The torsion submodule is trivial.

See Also:
InvolutiveBasis, PolInvReduce, PolHilbertSeries, Syzygies, SyzygyModule, PolResolution, PolSubFactor, PolKernel, PolHom, 
PolHomHom, PolExt1, PolExtn, PolParametrization, PolSyzOp.




Involutive[PolWeightedHilbertSeries] -  Hilbert series of the module generated by the last InvolutiveBasis 
command (weighted version)

Calling Sequence:
     PolWeightedHilbertSeries(degrees,v)

Parameters:
 degrees -  list of variables associated with degrees (weights)
 v       -  (optional) name of the indeterminate (default ’s’)

Description:

• The command PolWeightedHilbertSeries is completely analogous to PolHilbertSeries with the only exception that the standard 
grading of the module of m-tuples over the polynomial ring is replaced by the grading defined by degrees. The information is 
derived from the last call of InvolutiveBasis.

• The parameter degrees is a list of the form [<variable1>=<degree1>, <variable2>=<degree2>, ...]. In this way a degree is assigned 
to each variable. In the module case degrees other than 0 can also be assigned to the standard basis vectors of the free module. The 
above syntax is therefore extended to [x1=d1, ..., xn=dn, 1=e1,  ..., m=em], cf. also InvolutiveBasis.

• The special case where all degrees are equal to 1 yields the same result (in a different expansion) as PolHilbertSeries. 

• The default name of the indeterminate is ’s’. It will not be affected by a subs command.

Examples:
> with(Involutive):
> var := [x,y,z];

 := var [ ], ,x y z
> L := [x*y+y*z+z*x,x*y*z-1];

 := L [ ],+ +xy yz z x −xyz 1
> InvolutiveBasis(L, var);

[ ], ,+ +xy yz z x + +yz2 z2 x 1 + +z2 y2 y z
> PolWeightedHilbertSeries([x=1,y=1,z=1], lambda);

+ + +2
λ
−1 λ

2
λ2

−1 λ
1

−1 λ
λ3

−1 λ
> taylor(%, lambda, 7);

+ + + + + + +1 3 λ 5 λ2 6 λ3 6 λ4 6 λ5 6 λ6 ( )O λ7

> PolHilbertSeries(lambda);

+ + + +1 3 λ 5 λ2 6 λ3 6
λ4

−1 λ
The next examples deals with graded modules:
> var := [x=2,y=1,1=0,2=3];

 := var [ ], , ,=x 2 =y 1 =1 0 =2 3
> L := [[x^2*y^2, x*y], [x^3-y^6,y^3]];

 := L [ ],[ ],x2 y2 xy [ ],−x3 y6 y3

> InvolutiveBasis(L, var);

[ ], , , ,[ ],x2 y2 xy [ ],−x3 y6 y3 [ ],y8 − +y5 x2 y [ ],xy8 −yx3 y5 x [ ],0 − + −xy7 yx4 y5 x2

> PolWeightedHilbertSeries(var, lambda);

+ + + + + + + + + + + + + +2 λ7 2 λ6 3 λ5 3 λ4 2 λ3 2 λ2 λ 1 λ9 λ8
λ11

−1 λ2

λ9

−1 λ
λ7

−1 λ
λ5

−1 λ
λ3

−1 λ
> F := FactorModuleBasis(var);

 := F








,+ + + + + + + + + + + + + + + + +y7 y6 y5 y4 y3 y2 y 1 xy7 xy6 y5 x xy4 xy3 xy2 xy x x2 y x2 + + + +

x4

−1 x

x3

−1 y

x2

−1 y

x

−1 y

1

−1 y
> subs([x=lambda^2, y=lambda], F[1]+F[2]*lambda^3);



+ + + + + + + + + +2 λ7 2 λ6 3 λ5 3 λ4 2 λ3 2 λ2 λ 1 λ9 λ8 λ3








+ + + +

λ8

−1 λ2

λ6

−1 λ
λ4

−1 λ
λ2

−1 λ
1

−1 λ

See Also:
InvolutiveBasis, PolTabVar, JanetGraph, PolHilbertSeries, PolHilbertPolynomial, PolHilbertFunction, PolCartanCharacters, 
FactorModuleBasis.




Involutive[PolZeroSets] -  return the coefficients by which the involutive basis algorithm had to divide

Calling Sequence:
     PolZeroSets()

Parameters:
 -    -   none (assumes that the involutive basis has been computed before)

Description:

• PolZeroSets returns the list of elements which are transcendental over the ground field of the last involutive basis computation and by 
which some polynomials had to be divided during this last involutive basis computation. This command is useful when applying 
InvolutiveBasis to a module defined over a polynomial ring whose coefficient domain consists of rational functions.

• The result of PolZeroSets is a list which does not contain multiple entries, i.e. each (transcendental) denominator of the last involutive 
basis computation occurs only once in the resulting list.

• The purpose of PolZeroSets is similar to that of ZeroSets in the Janet package.

Example:
> with(Involutive):


Example 1:


> var := [x,y];

 := var [ ],x y
> L := [a*x*y-a, x-b*y];

 := L [ ],−a xy a −x b y
> InvolutiveBasis(L, var);









,−x b y

− +1 y2 b

b
> PolTabVar();

[ ], ,−x b y [ ],x y x









, ,

− +1 y2 b

b
[ ],* y y2

> PolZeroSets();

[ ],a b
> InvolutiveBasis(L, var, "N");

[ ],−x b y − +1 y2 b
> PolZeroSets();

[ ]a


Example 2:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x^2-y, x*y-a*z];

 := L [ ],−x2 y −xy a z
> InvolutiveBasis(L, var);

[ ], ,− +a z x y2 −xy a z −x2 y
> PolTabVar();

[ ], ,− +a z x y2 [ ], ,* y z y2

[ ], ,−xy a z [ ], ,* y z xy

[ ], ,−x2 y [ ], ,x y z x2

> PolZeroSets();



[ ]a

See Also:
InvolutiveBasis, InvolutiveOptions, PolTabVar, Stats, PolInvReduce, FactorModuleBasis, PolHilbertSeries, ZeroSets.




Involutive[Repres] -  express polynomials in a given vector space basis of polynomials

Calling Sequence:
     Repres(L,B,var)

Parameters:
  L     -  list of polynomials
  B     -  vector space basis as list of polynomials
 var   -  list of variables (of the polynomial ring)

Description:

• Repres expresses the polynomials in L as linear combinations of the polynomials in B, if possible. More precisely, the i-th column of 

the result represents the i-th polynomial in L with respect to the vector space basis B, if it lies in the vector space spanned by B.

• The result is a matrix whose number of rows equals the number of elements in B and whose number of columns equals the number of 
elements in L.

• If a polynomial in L does not lie in the vector space which is generated by B, then the corresponding column in the result is the zero 
column.

• Repres computes an involutive basis of B with right hand sides, applies PolInvReduce to L and uses the right hand sides to express the 
polynomials in L in terms of B, if the remainder returned by PolInvReduce is zero.

Examples:
> with(Involutive):
> var := [x,y,z,u];

 := var [ ], , ,x y z u
> B := [x^2+y^2, x*z+y*u, z^2+u^2];

 := B [ ], ,+x2 y2 +xz yu +z2 u2

> Repres(B, B, var);













1 0 0

0 1 0

0 0 1
> Repres(B, B, [x,y]);













0 0 0

0 0 0

+
y2

+z2 u2

x2

+z2 u2 +
u y

+z2 u2

z x

+z2 u2 1

> L := [0, x^2+y^2, 2*x*z+2*y*u, x^2+y^2+z^2+u^2];

 := L [ ], , ,0 +x2 y2 +2 xz 2 yu + + +x2 y2 z2 u2

> Repres(L, B, var);













0 1 0 1

0 0 2 0

0 0 0 1
> L := [a^2, x^2+y^2+z^2];

 := L [ ],a2 + +x2 y2 z2

> Repres(L, B, var);















0 0

0 0

0 0
The input need not consist of homogeneous polynomials:
> B := [x^2+1, y^2+z-1];

 := B [ ],+x2 1 + −y2 z 1
> L := [x^2+y^2+z, 1/7*x^2+1/7];

 := L








,+ +x2 y2 z +

x2

7

1

7
> Repres(L, B, [x,y,z]);













1
1

7

1 0

See Also:
PolRepres, coeffmatrix, getbas.




Involutive[Stats] -  display statistics of last application of InvolutiveBasis

Calling Sequence:
     Stats()

Parameters:
 -    -   none (assumes that InvolutiveBasis has been called before)

Description:

• Stats displays statistical information about the last run of InvolutiveBasis. 

Examples:
> with(Involutive):
> L := [x1+x2+x3+x4, x1*x2+x2*x3+x3*x4+x4*x1, x1*x2*x3+x2*x3*x4+x3*x4*x1+x4*x1*x2, 
x1*x2*x3*x4-1];

 := L [ ], , ,+ + +x1 x2 x3 x4 + + +x1 x2 x2 x3 x3 x4 x4 x1 + + +x1 x2 x3 x2 x3 x4 x3 x4 x1 x4 x1 x2 −x1 x2 x3 x4 1
> InvolutiveBasis(L, [x1,x2,x3,x4]);

+ + +x1 x2 x3 x4 + +x42 2 x4 x2 x22 + − −x2 x32 x32 x4 x42 x2 x43 − − + + −x32 x42 x43 x2 x44 x2 x3 x42 x3 x43 1, , , ,[

+ − −x44 x2 x45 x4 x2 + − −x42 x33 x43 x32 x3 x4 + − + −x44 x32 x2 x3 x4 x2 x3 x4 2 x42, , ]
> Stats();

,Number of polynomials in involutive basis 7

,Use of normal form procedure 30

,Number of reductions performed 38

,Number of transfers 0

,Use of first criterion 6

,Use of second criterion 0

,Use of third criterion 0

,Use of fourth criterion 0

The involutive basis is also a reduced Groebner basis.

See Also:
InvolutiveBasis, InvolutiveOptions, PolTabVar.




Involutive[Substitute] -  eliminate variables from a system of polynomial equations by substitution

Calling Sequence:
     Substitute(L,var)

Parameters:
 L    - list of polynomials in var
 var  - list of variables

Description:

• Substitute tries to eliminate variables from a system of polynomial equations in var by solving some of these equations for variables 
that occur only linearly and substituting the resulting expressions for these variables into the remaining equations.

• Substitute applies repeatedly InvolutivePreprocess to the list L of left hand sides of the polynomial equations. As long as 
InvolutivePreprocess finds a variable in var that occurs only linearly in some left hand side, the resulting expression for this variable 
is substituted into the other left hand sides in L and InvolutivePreprocess is applied again to the resulting list of left hand sides with 
one variable less and so on.

• It is convenient to apply Substitute to L prior to the run of InvolutiveBasis in order to reduce the complexity of the involutive basis 
computation.

• L is the list of left hand sides of the polynomial equations =p1 0, ..., =pn 0.

• var is a list specifying the variables occurring in the system of polynomial equations.

• The result of Substitute is a list with three entries. The first entry is the list of left hand sides of a system of polynomial equations 
which has finally been obtained by the substitution process described above, i.e. the last list of left hand sides which could not be 
solved linearly for any variable anymore. The second entry of the result is the list of equations which have been used to eliminate 
variables from the system of polynomial equations. The third entry of the result is the list of remaining variables, i.e. the complement 
in var of the set of variables occurring as left hand sides in the second entry of the result.

Examples:
> with(Involutive):


Example 1:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x*y, 3*x-y^2-z, y^2-z^2];

 := L [ ], ,xy − −3 x y2 z −y2 z2

> InvolutivePreprocess(L, var);







=x +

1

3
y2

1

3
z

> Substitute(L, var);







, ,







,

1

3
( )+y2 z y −y2 z2







=x +

1

3
y2

1

3
z [ ],y z



Example 2:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x*y-z, z-x*y+y-1, x^2-y^2];

 := L [ ], ,−xy z − + −z xy y 1 −x2 y2

> Substitute(L, var);

[ ], ,[ ]−x2 1 [ ],=z xy =y 1 [ ]x



> InvolutivePreprocess(L, var);

[ ],=z xy =z − +xy y 1
> L2 := subs(z=x*y, L);

 := L2 [ ], ,0 −y 1 −x2 y2

> InvolutivePreprocess(L2, [x,y]);

[ ]=y 1
> subs(y=1, L2);

[ ], ,0 0 −x2 1


Example 3:


> var := [x,y,z];

 := var [ ], ,x y z
> InvolutiveOptions("char", 2);

0
> L := [x*y, 3*x-y^2*z^2, y^2-z^2];

 := L [ ], ,xy −3 x y2 z2 −y2 z2

> InvolutivePreprocess(L, var);

[ ]=x y2 z2

> Substitute(L, var);

[ ], ,[ ],y3 z2 +y2 z2 [ ]=x y2 z2 [ ],y z
> InvolutiveOptions("char", 3);

2
> L := [x*y, 3*x-y^2*z^2, y^2-z^2];

 := L [ ], ,xy −3 x y2 z2 −y2 z2

> InvolutivePreprocess(L, var);

[ ]
> Substitute(L, var);

[ ], ,[ ], ,xy −3 x y2 z2 −y2 z2 [ ] [ ], ,x y z

See Also:
InvolutiveBasis, InvolutivePreprocess, InvolutiveOptions, PolTabVar, PolInvReduce, PolHilbertSeries, SyzygyModule, GroebnerBasis.




Involutive[SubmoduleBasis] -  return a vector space basis for the module generated by the last computed Janet basis 
as a generating function

Calling Sequence:
     SubmoduleBasis(var,subs)

Parameters:
 var  -   list of variables (of the polynomial ring)
 subs -   (optional) equation "subs"=expression

Description:

• SubmoduleBasis returns a generating function which enumerates (the leading monomials of) a vector space basis for the submodule 
of the free module over the polynomial ring generated by the Janet basis of the last call of InvolutiveBasis.

• A term of the form m/((1-x1)...(1-xn)) ei in the result enumerates all (tuples of) polynomials which are obtained as multiples of the 

unique Janet basis element with leading monomial m (in the i-th entry, in case of tuples) by polynomials in x1, ..., xn. Here m stands for a 

monomial in the indeterminates var and ei for the i-th standard basis vector of the free module of tuples. Note that if the rank of this 
free module is greater than one, the result of SubmoduleBasis is accordingly a list of generating functions.

• The result of SubmoduleBasis can also be easily read off from the information given by PolTabVar. It is just the sum of the leading 
monomials of the Janet basis, each multiplied by the geometric series 1/((1-xµ

1
)...(1-xµ

k
), where { xµ

1
, ..., xµ

k
 } is the corresponding set of 

multiplicative variables for the respective Janet basis element.

• var is expected to be the list of variables of the polynomial ring that was given as parameter to InvolutiveBasis before.

• If an optional equation "subs"=expression is provided, then SubmoduleBasis substitutes ’expression’ for all variables in var in the 
result (cf. Example 1 below).

• For more information about generalized Hilbert series, see W. Plesken, D. Robertz, "Janet’s approach to presentations and resolutions 
for polynomials and linear pdes", Archiv der Mathematik, 84(1), 2005, 22-37.

Examples:
> with(Involutive):


Example 1:


> var := [x,y];

 := var [ ],x y
> InvolutiveBasis([x,y], var);

[ ],y x
> PolTabVar();

[ ], ,y [ ],* y y

[ ], ,x [ ],x y x
> SubmoduleBasis(var);

+
y

−1 y

x

( )−1 x ( )−1 y
> SubmoduleBasis(var, "subs"=t);

+
t

−1 t

t

( )−1 t 2

> SubmoduleHilbertSeries("var"=t);

+
t

−1 t

t

( )−1 t 2

> taylor(%, t=0, 20);

2 t 3 t2 4 t3 5 t4 6 t5 7 t6 8 t7 9 t8 10 t9 11 t10 12 t11 13 t12 14 t13 15 t14 16 t15 17 t16 18 t17 19 t18 20+ + + + + + + + + + + + + + + + + +



t19 ( )O t20+
> SubmoduleHilbertFunction(0);

0
> SubmoduleHilbertFunction(1);

2
> SubmoduleHilbertFunction("");
Dim(M.s) = 0, for s < 1
Dim(M.s) = 1+s, for s >= 1
> SubmoduleHilbertPolynomial(s);

+1 s


Example 2:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x*y+x*z, x*y^2*z, x^2*z];

 := L [ ], ,+xy xz xy2 z x2 z
> InvolutiveBasis(L, var);

[ ], , ,+xy xz x2 z yx2 z3 x
> PolTabVar();

[ ], ,+xy xz [ ], ,* y z xy

[ ], ,x2 z [ ], ,x * z x2 z

[ ], ,yx2 [ ], ,x y z yx2

[ ], ,z3 x [ ], ,* * z z3 x
> SubmoduleBasis(var);

+ + +
xy

( )−1 y ( )−1 z

x2 z

( )−1 x ( )−1 z

yx2

( )−1 x ( )−1 y ( )−1 z

z3 x

−1 z
> SubmoduleHilbertSeries(t);

+ + +
t2

( )−1 t 2

t3

( )−1 t 2

t3

( )−1 t 3

t4

−1 t
> taylor(%, t=0, 20);

t2 4 t3 9 t4 14 t5 20 t6 27 t7 35 t8 44 t9 54 t10 65 t11 77 t12 90 t13 104 t14 119 t15 135 t16 152 t17 170 t18+ + + + + + + + + + + + + + + +
189 t19 ( )O t20+ +

> SubmoduleHilbertFunction("");
Dim(M.s) = 0, for s < 2
Dim(M.2) = 1
Dim(M.3) = 4
Dim(M.s) = -1+1/2*s+1/2*s^2, for s >= 4
> SubmoduleHilbertPolynomial(s);

− + +1
1

2
s

1

2
s2



Example 3:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [[x^2,0], [x-y, z]];

 := L [ ],[ ],x2 0 [ ],−x y z
> InvolutiveBasis(L, var);

[ ], ,[ ],−x y z [ ],y2 − −yz xz [ ],0 x2 z
> PolTabVar();

[ ], ,[ ],−x y z [ ], ,x y z [ ],x 1

[ ], ,[ ],y2 − −yz xz [ ], ,* y z [ ],y2 1

[ ], ,[ ],0 x2 z [ ], ,x y z [ ],x2 z 2
> SubmoduleBasis(var);









,+

y2

( )−1 y ( )−1 z

x

( )−1 x ( )−1 y ( )−1 z

x2 z

( )−1 x ( )−1 y ( )−1 z



> SubmoduleBasis(var, "subs"=t);









,+

t2

( )−1 t 2

t

( )−1 t 3

t3

( )−1 t 3

> SubmoduleHilbertSeries("var"=t);

+ +
t2

( )−1 t 2

t

( )−1 t 3

t3

( )−1 t 3

> taylor(%, t=0, 20);

t 4 t2 9 t3 16 t4 25 t5 36 t6 49 t7 64 t8 81 t9 100 t10 121 t11 144 t12 169 t13 196 t14 225 t15 256 t16 289+ + + + + + + + + + + + + + + +
t17 324 t18 361 t19 ( )O t20+ + +

> SubmoduleHilbertFunction(0);

0
> SubmoduleHilbertFunction(1);

1
> SubmoduleHilbertFunction("");
Dim(M.s) = 0, for s < 1
Dim(M.1) = 1
Dim(M.2) = 4
Dim(M.s) = s^2, for s >= 3
> SubmoduleHilbertPolynomial(s);

s2

See Also:
InvolutiveBasis, PolTabVar, SubmoduleHilbertSeries, SubmoduleHilbertFunction, SubmoduleHilbertPolynomial, SubmoduleHF, 
SubmoduleHP, FactorModuleBasis, PolHilbertSeries.




Involutive[SubmoduleDimension] -  return the dimension of the module generated by the last computed Janet basis

Calling Sequence:
     SubmoduleDimension()

Parameters:
 -    -   none (assumes that the involutive basis has been computed before)

Description:

• SubmoduleDimension returns the degree of the filtered Hilbert polynomial (as in SubmoduleHP) of the filtration of the factor module 
for which a presentation was computed by the last call of InvolutiveBasis, as explained in SubmoduleHilbertSeries.

• Note, SubmoduleDimension()-1 equals the degree of SubmoduleHilbertPolynomial().

Examples:
> with(Involutive):


Example 1:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x*y+y*z+z*x, x*y*z-1];

 := L [ ],+ +xy yz z x −xyz 1
> InvolutiveBasis(L, var);

[ ], ,+ +xy yz z x + +yz2 z2 x 1 + +z2 y2 y z
> PolTabVar();

[ ], ,+ +xy yz z x [ ], ,x y z xy

[ ], ,+ +yz2 z2 x 1 [ ], ,x * z z2 x

[ ], ,+ +z2 y2 y z [ ], ,* y z z2 y2

> SubmoduleDimension();

3
> SubmoduleHP();

− + + +
25

6
s

1

6
s3 4 s2

> SubmoduleHilbertPolynomial();

+ −
1

2
s2

3

2
s 5



Example 2:


> var := [x,y];

 := var [ ],x y
> L := [[x,y,z], [y,z,x]];

 := L [ ],[ ], ,x y z [ ], ,y z x
> InvolutiveBasis(L, var);

[ ],[ ], ,y z x [ ], ,x y z
> SubmoduleDimension();

2
> SubmoduleHP();

+s s2

> SubmoduleHilbertPolynomial();

2 s

See Also:



InvolutiveBasis, PolTabVar, SubmoduleHilbertSeries, SubmoduleHilbertPolynomial, SubmoduleHilbertFunction, SubmoduleHP, 
SubmoduleHF, PolHilbertSeries, PolDimension.




Involutive[SubmoduleHilbertFunction] -  compute the graded Hilbert function for the module generated by the 
last computed Janet basis

Calling Sequence:
     SubmoduleHilbertFunction(p)
     SubmoduleHilbertFunction()

Parameters:
 p    -    " " (empty string) or natural number 
  

Description:

• Let ∑
=i 0

∞

di v
i be the Hilbert series as discussed in SubmoduleHilbertSeries. Then SubmoduleHilbertFunction(p) returns dp  in case p is 

a natural number and prints the function →s ds  in case p is the empty string.

• SubmoduleHF, which is a summed up version of the present command and refers to the filtration rather than to the induced grading, 
must not be confused with SubmoduleHilbertFunction.

• SubmoduleHilbertFunction() returns a function expecting one parameter p which computes SubmoduleHilbertFunction(p).

Examples:
> with(Involutive):


Example 1:


> var := [x,y];

 := var [ ],x y
> InvolutiveBasis([x,y], var);

[ ],y x
> PolTabVar();

[ ], ,y [ ],* y y

[ ], ,x [ ],x y x
> SubmoduleHilbertSeries("var"=t);

+
t

−1 t

t

( )−1 t 2

> taylor(%, t=0, 20);

2 t 3 t2 4 t3 5 t4 6 t5 7 t6 8 t7 9 t8 10 t9 11 t10 12 t11 13 t12 14 t13 15 t14 16 t15 17 t16 18 t17 19 t18 20+ + + + + + + + + + + + + + + + + +
t19 ( )O t20+

> SubmoduleHilbertFunction("");
Dim(M.s) = 0, for s < 1
Dim(M.s) = 1+s, for s >= 1
> SubmoduleHilbertFunction(1);

2
> SubmoduleHilbertFunction(9);

10


Example 2:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x*y+x*z, x*y^2*z, x^2*z];

 := L [ ], ,+xy xz xy2 z x2 z
> InvolutiveBasis(L, var);

[ ], , ,+xy xz x2 z yx2 z3 x



> PolTabVar();

[ ], ,+xy xz [ ], ,* y z xy

[ ], ,x2 z [ ], ,x * z x2 z

[ ], ,yx2 [ ], ,x y z yx2

[ ], ,z3 x [ ], ,* * z z3 x
> SubmoduleHilbertSeries(t);

+ + +
t2

( )−1 t 2

t3

( )−1 t 2

t3

( )−1 t 3

t4

−1 t
> taylor(%, t=0, 20);

t2 4 t3 9 t4 14 t5 20 t6 27 t7 35 t8 44 t9 54 t10 65 t11 77 t12 90 t13 104 t14 119 t15 135 t16 152 t17 170 t18+ + + + + + + + + + + + + + + +
189 t19 ( )O t20+ +

> SubmoduleHilbertFunction("");
Dim(M.s) = 0, for s < 2
Dim(M.2) = 1
Dim(M.3) = 4
Dim(M.s) = -1+1/2*s+1/2*s^2, for s >= 4
> SubmoduleHilbertFunction(5);

14


Example 3:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [[x^2,0], [x-y, z]];

 := L [ ],[ ],x2 0 [ ],−x y z
> InvolutiveBasis(L, var);

[ ], ,[ ],−x y z [ ],y2 − −yz xz [ ],0 x2 z
> PolTabVar();

[ ], ,[ ],−x y z [ ], ,x y z [ ],x 1

[ ], ,[ ],y2 − −yz xz [ ], ,* y z [ ],y2 1

[ ], ,[ ],0 x2 z [ ], ,x y z [ ],x2 z 2
> SubmoduleHilbertSeries("var"=t);

+ +
t2

( )−1 t 2

t

( )−1 t 3

t3

( )−1 t 3

> taylor(%, t=0, 20);

t 4 t2 9 t3 16 t4 25 t5 36 t6 49 t7 64 t8 81 t9 100 t10 121 t11 144 t12 169 t13 196 t14 225 t15 256 t16 289+ + + + + + + + + + + + + + + +
t17 324 t18 361 t19 ( )O t20+ + +

> SubmoduleHilbertFunction("");
Dim(M.s) = 0, for s < 1
Dim(M.1) = 1
Dim(M.2) = 4
Dim(M.s) = s^2, for s >= 3
> SubmoduleHilbertFunction(8);

64

See Also:
InvolutiveBasis, PolTabVar, SubmoduleBasis, SubmoduleHilbertSeries, SubmoduleHilbertPolynomial, SubmoduleHP, SubmoduleHF, 
FactorModuleBasis, PolHilbertSeries, PolHilbertFunction.




Involutive[SubmoduleHilbertPolynomial] -  graded Hilbert polynomial for the module generated by the last 
computed Janet basis

Calling Sequence:
     SubmoduleHilbertPolynomial(p)
     SubmoduleHilbertPolynomial()

Parameters:
 p    -    natural number or name of an indeterminate

Description:

• Let ∑
=i 0

∞

di v
i be the Hilbert series as discussed in SubmoduleHilbertSeries. Then SubmoduleHilbertPolynomial(p) returns dp  in case p 

is a natural number greater than or equal to the maximal (standard) degree of the elements in the Janet basis computed by the last call 
of InvolutiveBasis. If p is the name of an indeterminate, then the Hilbert polynomial in p is returned. The information is derived from 
the last call of InvolutiveBasis. Note, this same information can be extracted from the command SubmoduleHilbertFunction.

• SubmoduleHP, which is a summed up version of the present command and refers to the filtration rather than to the induced grading, 
must not be confused with SubmoduleHilbertPolynomial.

• SubmoduleHilbertPolynomial() returns the graded Hilbert polynomial of the module of the leading terms of the module for which an 
involutive basis has been computed last by InvolutiveBasis.

• As optional parameter a name p for the indeterminate of the Hilbert polynomial can be given. The default name of the indeterminate is 
’s’. It will not be affected by a subs command.

Examples:
> with(Involutive):


Example 1:


> var := [x,y];

 := var [ ],x y
> InvolutiveBasis([x,y], var);

[ ],y x
> PolTabVar();

[ ], ,y [ ],* y y

[ ], ,x [ ],x y x
> SubmoduleHilbertSeries("var"=t);

+
t

−1 t

t

( )−1 t 2

> taylor(%, t=0, 20);

2 t 3 t2 4 t3 5 t4 6 t5 7 t6 8 t7 9 t8 10 t9 11 t10 12 t11 13 t12 14 t13 15 t14 16 t15 17 t16 18 t17 19 t18 20+ + + + + + + + + + + + + + + + + +
t19 ( )O t20+

> SubmoduleHilbertFunction("");
Dim(M.s) = 0, for s < 1
Dim(M.s) = 1+s, for s >= 1
> SubmoduleHilbertPolynomial(s);

+1 s
> SubmoduleHilbertPolynomial(1);

2
> SubmoduleHilbertPolynomial(9);

10


Example 2:




Example 2:

> var := [x,y,z];

 := var [ ], ,x y z
> L := [x*y+x*z, x*y^2*z, x^2*z];

 := L [ ], ,+xy xz xy2 z x2 z
> InvolutiveBasis(L, var);

[ ], , ,+xy xz x2 z yx2 z3 x
> PolTabVar();

[ ], ,+xy xz [ ], ,* y z xy

[ ], ,x2 z [ ], ,x * z x2 z

[ ], ,yx2 [ ], ,x y z yx2

[ ], ,z3 x [ ], ,* * z z3 x
> SubmoduleHilbertSeries(t);

+ + +
t2

( )−1 t 2

t3

( )−1 t 2

t3

( )−1 t 3

t4

−1 t
> taylor(%, t=0, 20);

t2 4 t3 9 t4 14 t5 20 t6 27 t7 35 t8 44 t9 54 t10 65 t11 77 t12 90 t13 104 t14 119 t15 135 t16 152 t17 170 t18+ + + + + + + + + + + + + + + +
189 t19 ( )O t20+ +

> SubmoduleHilbertFunction("");
Dim(M.s) = 0, for s < 2
Dim(M.2) = 1
Dim(M.3) = 4
Dim(M.s) = -1+1/2*s+1/2*s^2, for s >= 4
> SubmoduleHilbertPolynomial(s);

− + +1
1

2
s

1

2
s2

> SubmoduleHilbertPolynomial(5);

14


Example 3:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [[x^2,0], [x-y, z]];

 := L [ ],[ ],x2 0 [ ],−x y z
> InvolutiveBasis(L, var);

[ ], ,[ ],−x y z [ ],y2 − −yz xz [ ],0 x2 z
> PolTabVar();

[ ], ,[ ],−x y z [ ], ,x y z [ ],x 1

[ ], ,[ ],y2 − −yz xz [ ], ,* y z [ ],y2 1

[ ], ,[ ],0 x2 z [ ], ,x y z [ ],x2 z 2
> SubmoduleHilbertSeries("var"=t);

+ +
t2

( )−1 t 2

t

( )−1 t 3

t3

( )−1 t 3

> taylor(%, t=0, 20);

t 4 t2 9 t3 16 t4 25 t5 36 t6 49 t7 64 t8 81 t9 100 t10 121 t11 144 t12 169 t13 196 t14 225 t15 256 t16 289+ + + + + + + + + + + + + + + +
t17 324 t18 361 t19 ( )O t20+ + +

> SubmoduleHilbertFunction("");
Dim(M.s) = 0, for s < 1
Dim(M.1) = 1
Dim(M.2) = 4
Dim(M.s) = s^2, for s >= 3
> SubmoduleHilbertPolynomial(s);

s2

> SubmoduleHilbertPolynomial(8);

64

See Also:



InvolutiveBasis, PolTabVar, SubmoduleBasis, SubmoduleHilbertSeries, SubmoduleHilbertFunction, SubmoduleHF, SubmoduleHP, 
FactorModuleBasis, PolHilbertSeries, PolHilbertPolynomial.




Involutive[SubmoduleHilbertSeries] -  Hilbert series of the module generated by the last computed Janet basis

Calling Sequence:
     SubmoduleHilbertSeries(v)

Parameters:
 v    -  (optional) name of the indeterminate (default: ’s’)

Description:

• SubmoduleHilbertSeries returns a generating function counting - according to the standard degrees - the leading monomials of the 
module M generated by the Janet basis produced by the last call of InvolutiveBasis.

• The free module of m-tuples over the polynomial ring is graded by the standard grading (maximal degree of the components) and the 
submodule of the leading monomials of M inherits a grading from this graded free module. Note, this submodule, and therefore also 
its Hilbert series, depends on the term order chosen in the call of InvolutiveBasis. SubmoduleHilbertSeries returns the Hilbert series 
of the submodule of leading monomials of M. 

• The output is the corresponding Hilbert series ∑
=i 0

∞

di v
i , where the  di  are the dimensions of the homogeneous components of the 

module of leading monomials of M.

• The default name of the indeterminate v is ’s’. It cannot be affected by a subs command.

• Note, if one has assigned non-standard degrees to the variables or to the standard basis vectors, the command 
SubmoduleHilbertSeries will proceed from the leading terms computed by InvolutiveBasis but then reassign the degrees 1 for the 
variables and 0 for the basis vectors.

Examples:
> with(Involutive):


Example 1:


> var := [x,y];

 := var [ ],x y
> InvolutiveBasis([x,y], var);

[ ],y x
> PolTabVar();

[ ], ,y [ ],* y y

[ ], ,x [ ],x y x
> SubmoduleBasis(var);

+
y

−1 y

x

( )−1 x ( )−1 y
> SubmoduleBasis(var, "subs"=t);

+
t

−1 t

t

( )−1 t 2

> SubmoduleHilbertSeries("var"=t);

+
t

−1 t

t

( )−1 t 2

> taylor(%, t=0, 20);

2 t 3 t2 4 t3 5 t4 6 t5 7 t6 8 t7 9 t8 10 t9 11 t10 12 t11 13 t12 14 t13 15 t14 16 t15 17 t16 18 t17 19 t18 20+ + + + + + + + + + + + + + + + + +
t19 ( )O t20+

> SubmoduleHilbertFunction(0);

0



> SubmoduleHilbertFunction(1);

2
> SubmoduleHilbertFunction("");
Dim(M.s) = 0, for s < 1
Dim(M.s) = 1+s, for s >= 1
> SubmoduleHilbertPolynomial(s);

+1 s


Example 2:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x*y+x*z, x*y^2*z, x^2*z];

 := L [ ], ,+xy xz xy2 z x2 z
> InvolutiveBasis(L, var);

[ ], , ,+xy xz x2 z yx2 z3 x
> PolTabVar();

[ ], ,+xy xz [ ], ,* y z xy

[ ], ,x2 z [ ], ,x * z x2 z

[ ], ,yx2 [ ], ,x y z yx2

[ ], ,z3 x [ ], ,* * z z3 x
> SubmoduleBasis(var);

+ + +
xy

( )−1 y ( )−1 z

x2 z

( )−1 x ( )−1 z

yx2

( )−1 x ( )−1 y ( )−1 z

z3 x

−1 z
> SubmoduleHilbertSeries(t);

+ + +
t2

( )−1 t 2

t3

( )−1 t 2

t3

( )−1 t 3

t4

−1 t
> SubmoduleHilbertFunction("");
Dim(M.s) = 0, for s < 2
Dim(M.2) = 1
Dim(M.3) = 4
Dim(M.s) = -1+1/2*s+1/2*s^2, for s >= 4
> SubmoduleHilbertPolynomial(s);

− + +1
1

2
s

1

2
s2



Example 3:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [[x^2,0], [x-y, z]];

 := L [ ],[ ],x2 0 [ ],−x y z
> InvolutiveBasis(L, var);

[ ], ,[ ],−x y z [ ],y2 − −yz xz [ ],0 x2 z
> PolTabVar();

[ ], ,[ ],−x y z [ ], ,x y z [ ],x 1

[ ], ,[ ],y2 − −yz xz [ ], ,* y z [ ],y2 1

[ ], ,[ ],0 x2 z [ ], ,x y z [ ],x2 z 2
> SubmoduleBasis(var);









,+

y2

( )−1 y ( )−1 z

x

( )−1 x ( )−1 y ( )−1 z

x2 z

( )−1 x ( )−1 y ( )−1 z
> SubmoduleBasis(var, "subs"=t);









,+

t2

( )−1 t 2

t

( )−1 t 3

t3

( )−1 t 3

> SubmoduleHilbertSeries("var"=t);

+ +
t2

( )−1 t 2

t

( )−1 t 3

t3

( )−1 t 3



> taylor(%, t=0, 20);

t 4 t2 9 t3 16 t4 25 t5 36 t6 49 t7 64 t8 81 t9 100 t10 121 t11 144 t12 169 t13 196 t14 225 t15 256 t16 289+ + + + + + + + + + + + + + + +
t17 324 t18 361 t19 ( )O t20+ + +

> SubmoduleHilbertFunction(0);

0
> SubmoduleHilbertFunction(1);

1
> SubmoduleHilbertFunction("");
Dim(M.s) = 0, for s < 1
Dim(M.1) = 1
Dim(M.2) = 4
Dim(M.s) = s^2, for s >= 3
> SubmoduleHilbertPolynomial(s);

s2

See Also:
InvolutiveBasis, PolTabVar, SubmoduleBasis, SubmoduleHilbertPolynomial, SubmoduleHilbertFunction, SubmoduleHP, SubmoduleHF, 
FactorModuleBasis, PolHilbertSeries.




Involutive[SubmoduleHF] -  compute the filtered Hilbert function for the module generated by the last computed Janet 
basis

Calling Sequence:
     SubmoduleHF(p)
     SubmoduleHF()

Parameters:
 p    -    " " (empty string) or natural number 
  

Description:

• Let ∑
=i 0

∞

di v
i be the Hilbert series as discussed in SubmoduleHilbertSeries. Then SubmoduleHF(p) returns ∑

=i 0

p

di for natural numbers p 

and prints the corresponding function in case p is the empty string.

• SubmoduleHilbertFunction, of which the present command is a summed up version and which refers to the induced grading rather 
than to the filtration, must not be confused with SubmoduleHF().

• SubmoduleHF() returns a function expecting one parameter p which computes SubmoduleHF(p).

Examples:
> with(Involutive):


Example 1:


> var := [x,y];

 := var [ ],x y
> InvolutiveBasis([x,y], var);

[ ],y x
> PolTabVar();

[ ], ,y [ ],* y y

[ ], ,x [ ],x y x
> SubmoduleHilbertSeries("var"=t);

+
t

−1 t

t

( )−1 t 2

> taylor(%, t=0, 20);

2 t 3 t2 4 t3 5 t4 6 t5 7 t6 8 t7 9 t8 10 t9 11 t10 12 t11 13 t12 14 t13 15 t14 16 t15 17 t16 18 t17 19 t18 20+ + + + + + + + + + + + + + + + + +
t19 ( )O t20+

> SubmoduleHF("");
s < 1: 0
s >= 1: 3/2*s+1/2*s^2 
> SubmoduleHF(1);

2
> SubmoduleHF(2);

5
> SubmoduleHilbertFunction("");
Dim(M.s) = 0, for s < 1
Dim(M.s) = 1+s, for s >= 1
> SubmoduleHilbertFunction(1);

2
> SubmoduleHilbertFunction(2);

3


Example 2:




> var := [x,y,z];

 := var [ ], ,x y z
> L := [x*y+x*z, x*y^2*z, x^2*z];

 := L [ ], ,+xy xz xy2 z x2 z
> InvolutiveBasis(L, var);

[ ], , ,+xy xz x2 z yx2 z3 x
> PolTabVar();

[ ], ,+xy xz [ ], ,* y z xy

[ ], ,x2 z [ ], ,x * z x2 z

[ ], ,yx2 [ ], ,x y z yx2

[ ], ,z3 x [ ], ,* * z z3 x
> SubmoduleHilbertSeries(t);

+ + +
t2

( )−1 t 2

t3

( )−1 t 2

t3

( )−1 t 3

t4

−1 t
> taylor(%, t=0, 20);

t2 4 t3 9 t4 14 t5 20 t6 27 t7 35 t8 44 t9 54 t10 65 t11 77 t12 90 t13 104 t14 119 t15 135 t16 152 t17 170 t18+ + + + + + + + + + + + + + + +
189 t19 ( )O t20+ +

> SubmoduleHF("");
s < 2: 0
s = 2: 1
s = 3: 5
s >= 4: 1/2*s^2-2/3*s-2+1/6*s^3 
> SubmoduleHF(5);

28
> SubmoduleHF(6);

48
> SubmoduleHilbertFunction("");
Dim(M.s) = 0, for s < 2
Dim(M.2) = 1
Dim(M.3) = 4
Dim(M.s) = -1+1/2*s+1/2*s^2, for s >= 4
> SubmoduleHilbertFunction(5);

14
> SubmoduleHilbertFunction(6);

20


Example 3:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [[x^2,0], [x-y, z]];

 := L [ ],[ ],x2 0 [ ],−x y z
> InvolutiveBasis(L, var);

[ ], ,[ ],−x y z [ ],y2 − −yz xz [ ],0 x2 z
> PolTabVar();

[ ], ,[ ],−x y z [ ], ,x y z [ ],x 1

[ ], ,[ ],y2 − −yz xz [ ], ,* y z [ ],y2 1

[ ], ,[ ],0 x2 z [ ], ,x y z [ ],x2 z 2
> SubmoduleHilbertSeries("var"=t);

+ +
t2

( )−1 t 2

t

( )−1 t 3

t3

( )−1 t 3

> taylor(%, t=0, 20);

t 4 t2 9 t3 16 t4 25 t5 36 t6 49 t7 64 t8 81 t9 100 t10 121 t11 144 t12 169 t13 196 t14 225 t15 256 t16 289+ + + + + + + + + + + + + + + +
t17 324 t18 361 t19 ( )O t20+ + +

> SubmoduleHF("");
s < 1: 0
s = 1: 1
s = 2: 5
s >= 3: 1/6*s+1/2*s^2+1/3*s^3 
> SubmoduleHF(3);



14
> SubmoduleHF(4);

30
> SubmoduleHilbertFunction("");
Dim(M.s) = 0, for s < 1
Dim(M.1) = 1
Dim(M.2) = 4
Dim(M.s) = s^2, for s >= 3
> SubmoduleHilbertFunction(3);

9
> SubmoduleHilbertFunction(4);

16

See Also:
InvolutiveBasis, PolTabVar, SubmoduleBasis, SubmoduleHilbertSeries, SubmoduleHilbertPolynomial, SubmoduleHilbertFunction, 
SubmoduleHP, FactorModuleBasis, PolHilbertSeries, PolHF.




Involutive[SubmoduleHP] -  compute the filtered Hilbert polynomial for the module generated by the last computed 
Janet basis

Calling Sequence:
     SubmoduleHP(p)
     SubmoduleHP()

Parameters:
 p    -    natural number or name of an indeterminate
  

Description:

• Let ∑
=i 0

∞

di v
i be the Hilbert series as discussed in SubmoduleHilbertSeries. Then SubmoduleHP(p) returns ∑

=i 0

p

di for natural numbers p 

greater than or equal to the maximal (standard) degree of the elements in the Janet basis computed by the last call of InvolutiveBasis, 
and the corresponding polynomial in p inducing this function in case p is an indeterminate. Note, all this information can also be 
extracted from the command SubmoduleHF.

• SubmoduleHP() returns the above polynomial with ´s´ as the default name of the indeterminate. ´s´ cannot be affected by a subs 
command.

• SubmoduleHilbertPolynomial, of which the present command is a summed up version and which refers to the induced grading rather 
than to the filtration, must not be confused with SubmoduleHP().

Examples:
> with(Involutive):


Example 1:


> var := [x,y];

 := var [ ],x y
> InvolutiveBasis([x,y], var);

[ ],y x
> PolTabVar();

[ ], ,y [ ],* y y

[ ], ,x [ ],x y x
> SubmoduleHilbertSeries("var"=t);

+
t

−1 t

t

( )−1 t 2

> taylor(%, t=0, 20);

2 t 3 t2 4 t3 5 t4 6 t5 7 t6 8 t7 9 t8 10 t9 11 t10 12 t11 13 t12 14 t13 15 t14 16 t15 17 t16 18 t17 19 t18 20+ + + + + + + + + + + + + + + + + +
t19 ( )O t20+

> SubmoduleHP(s);

+
3

2
s

1

2
s2

> SubmoduleHP(1);

2
> SubmoduleHP(2);

5
> SubmoduleHilbertPolynomial(s);

+1 s
> SubmoduleHilbertPolynomial(1);

2
> SubmoduleHilbertPolynomial(2);



3


Example 2:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [x*y+x*z, x*y^2*z, x^2*z];

 := L [ ], ,+xy xz xy2 z x2 z
> InvolutiveBasis(L, var);

[ ], , ,+xy xz x2 z yx2 z3 x
> PolTabVar();

[ ], ,+xy xz [ ], ,* y z xy

[ ], ,x2 z [ ], ,x * z x2 z

[ ], ,yx2 [ ], ,x y z yx2

[ ], ,z3 x [ ], ,* * z z3 x
> SubmoduleHilbertSeries(t);

+ + +
t2

( )−1 t 2

t3

( )−1 t 2

t3

( )−1 t 3

t4

−1 t
> taylor(%, t=0, 20);

t2 4 t3 9 t4 14 t5 20 t6 27 t7 35 t8 44 t9 54 t10 65 t11 77 t12 90 t13 104 t14 119 t15 135 t16 152 t17 170 t18+ + + + + + + + + + + + + + + +
189 t19 ( )O t20+ +

> SubmoduleHP(s);

− + − +
2

3
s

1

2
s2 2

1

6
s3

> SubmoduleHP(9);

154
> SubmoduleHP(10);

208
> SubmoduleHilbertPolynomial(s);

− + +1
1

2
s

1

2
s2

> SubmoduleHilbertPolynomial(9);

44
> SubmoduleHilbertPolynomial(10);

54


Example 3:


> var := [x,y,z];

 := var [ ], ,x y z
> L := [[x^2,0], [x-y, z]];

 := L [ ],[ ],x2 0 [ ],−x y z
> InvolutiveBasis(L, var);

[ ], ,[ ],−x y z [ ],y2 − −yz xz [ ],0 x2 z
> PolTabVar();

[ ], ,[ ],−x y z [ ], ,x y z [ ],x 1

[ ], ,[ ],y2 − −yz xz [ ], ,* y z [ ],y2 1

[ ], ,[ ],0 x2 z [ ], ,x y z [ ],x2 z 2
> SubmoduleHilbertSeries("var"=t);

+ +
t2

( )−1 t 2

t

( )−1 t 3

t3

( )−1 t 3

> taylor(%, t=0, 20);

t 4 t2 9 t3 16 t4 25 t5 36 t6 49 t7 64 t8 81 t9 100 t10 121 t11 144 t12 169 t13 196 t14 225 t15 256 t16 289+ + + + + + + + + + + + + + + +
t17 324 t18 361 t19 ( )O t20+ + +

> SubmoduleHP(s);



+ +
1

2
s2

1

6
s

1

3
s3

> SubmoduleHP(3);

14
> SubmoduleHP(4);

30
> SubmoduleHilbertPolynomial(s);

s2

> SubmoduleHilbertPolynomial(3);

9
> SubmoduleHilbertPolynomial(4);

16

See Also:
InvolutiveBasis, PolTabVar, SubmoduleBasis, SubmoduleHilbertSeries, SubmoduleHilbertPolynomial, SubmoduleHilbertFunction, 
SubmoduleHF, FactorModuleBasis, PolHilbertSeries, PolHP.




Involutive[Syzygies] -  return generating set for the syzygies of a finite generating set for a module over a polynomial ring

Calling Sequence:
     Syzygies(L,var,ord,mode)

Parameters:
 L    -  list of generators of the submodule with right hand sides
 var  -  list of variables (of the polynomial ring)
  ord  -  (optional) change of monomial ordering
  mode -  (optional) string "S", use simplify instead of expand internally

Description:

• Syzygies returns the list of expressions which occurred as right hand sides corresponding to zero left hand side during computation of 
the last call of InvolutiveBasis or during the reduction of the original generators and non-multiplicative prolongations of the Janet 
basis elements. Note, L has to be the same as in the last call of InvolutiveBasis and must be given with right hand sides naming the 
generators: generator=name.

• The expressions in the output list can be interpreted as necessary conditions to be satisfied by the right hand sides for solvability of the 
inhomogeneous system of algebraic equations with the given left hand sides.

• In terms of modules, Syzygies constructs the syzygies among the generators L of the module.

• In general, the result of Syzygies is not a Janet basis for the syzygies of L. The command SyzygyModule returns a Janet basis for the 
syzygies.

• The parameters var and ord have the same meaning as in InvolutiveBasis. In particular one has the possibility via var to work with 
other than the standard degrees for the variables and basis vectors, provided one has done that already in InvolutiveBasis.

• If the string "S" is given as parameter mode, the program uses simplify instead of expand in the normal form procedure. If the 
polynomials in the input L contain nonrational coefficients, more precisely, if the ground field contains algebraic elements over the 
rationals (RootOf), then simplify is used instead of expand automatically.

Examples:
> with(Involutive):


Example 1:


> var := [x,y];

 := var [ ],x y
> L := [x^2=a, x*y-x=b, y^2=c];

 := L [ ], ,=x2 a =−xy x b =y2 c
> InvolutiveBasis(L, var);

[ ],=x − − +b yb xc =y2 c
> Syzygies(L, var);

[ ], ,+ −xc y2 b yxc + − +xb xyb x2 c a + − +y2 b y3 b y2 xc xc
Substituting the standard basis vectors for a and b yields the matrix of the homomorphism R^{3x1} -> R^{3x1} whose image consists 
of the relations among the generators in L:
> Ls := expand(subs([a=[1,0,0], b=[0,1,0], c=[0,0,1]], [-c*x*y+b*y^2+c*x, 
a-c*x^2+b*y*x+b*x, c*x-c*x*y^2+b*y^3+b*y^2]));

 := Ls [ ], ,[ ], ,0 y2 − +xy x [ ], ,1 +xy x −x2 [ ], ,0 +y3 y2 −x y2 x
> s := linalg[transpose](matrix(Ls));

 := s













0 1 0

y2 +xy x +y3 y2

− +xy x −x2 −x y2 x



> simplify(linalg[multiply]([x^2 , x*y-x , y^2],s));

[ ], ,0 0 0
Note, the third column of s is redundant.


Example 2:


> var := [x,y];

 := var [ ],x y
> L := [[x^2,0]=[1,0,0], [0,y]=[0,1,0], [x^2,y]=[0,0,1]];

 := L [ ], ,=[ ],x2 0 [ ], ,1 0 0 =[ ],0 y [ ], ,0 1 0 =[ ],x2 y [ ], ,0 0 1
> InvolutiveBasis(L, var);

[ ],=[ ],0 y [ ], ,0 1 0 =[ ],x2 0 [ ], ,1 0 0
> Syzygies(L, var);

[ ][ ], ,-1 -1 1


Example 3:


> var := [x,y];

 := var [ ],x y
> L := [x^2+y^2-1=a, x+y-1=b, x^2-y^2=c];

 := L [ ], ,=+ −x2 y2 1 a =+ −x y 1 b =−x2 y2 c
> InvolutiveBasis(L, var);

[ ]=1 + − + + + −xb ( )−b 2 c y 2 y2 b 2 xyb c b 2 a
> Syzygies(L,var);

− + + + + + + + − + −x3 b ( )− − +b c 2 a x2 ( )+ −c b 2 a y2 xy2 b ( )− +b 2 c yx2 ( )−b 2 c y3 c 2 x2 y2 b 2 x3 yb 2 y3 xb 2 y4 b,[

+ − + + − + + + −( )− +c 2 a x ( )− +3 c 2 a y b x2 ( )− +3 b 2 c y2 2 yxc 2 x2 yb 2 y3 b 2 b c 2 a x3 b xb ( )−b 2 c y ( )− − +b c 2 a x2− + + +,

( )− − +3 b c 2 a y2 2 xyb xy2 b ( )− +b 2 c yx2 ( )− +b 2 c y3 b a c 2 x2 y2 b 2 x3 yb 2 y3 xb 2 y4 b+ + − + + + − + + − − + ,

− + + + − + −xb ( )+ −b 2 c 2 a y ( )−2 b 2 c y2 2 xy2 b 2 y3 b a b,

+ + + − − + − + −( )+ −c b 2 a x ( )− +b c y b x2 y2 b 2 yxc 2 xy2 b 2 x2 yb b a c]

See Also:
InvolutiveBasis, InvolutiveBasisFast, AddRhs, PolTabVar, PolInvReduce, PolInvReduceFast, SyzygyModule, SyzygyModuleFast, 
PolResolution, PolResolutionDim, PolEulerChar.




Involutive[SyzygyModule] -  return Janet basis of syzygy module of a generating set of a module over a polynomial ring

Calling Sequence:
     SyzygyModule(L,var,ord,mode,rel)

Parameters:
 L    -  list (or matrix) of generators of the submodule
 var  -  list of variables (of the polynomial ring)
 ord  -  (optional) change of monomial ordering
 mode -  (optional) string specifying options for the computation
 rel  -  (optional) equation "mod" = list of generators of a submodule

Description:

• SyzygyModule returns the minimal Janet basis of the syzygy module of the generating set L of a submodule of the free module of 
tuples of polynomials in var with respect to a certain ordering. If the optional parameter rel is specified, then the entries of L are 
interpreted as representatives of residue classes modulo the submodule generated by the right hand side of rel.

• The entries of L are polynomials in case of an ideal, i. e. a submodule of the free module of rank one, or lists of polynomials of length 

m, representing elements of the free module of m-tuples over the polynomial ring. If L is a matrix, then the generators are extracted 
from the rows of L. If the optional parameter rel is present, then the right hand side in rel is expected to contain polynomials in var 

or lists of polynomials of length m according to the entries in L.

• The parameters var, ord and have the same meaning as in InvolutiveBasis.

• The fourth argument mode is a string consisting of letters "N" or "S".

• If the letter "N" is present in mode, leading coefficients in the Janet basis of the syzygy module are not normalized to 1 (cf. also 
InvolutiveBasis).

• If the letter "S" is present in mode, the program uses simplify instead of expand in the normal form procedure. If the polynomials in 
the input L contain nonrational coefficients, more precisely, if the ground field contains algebraic elements over the rationals (RootOf
), then simplify is used instead of expand automatically.

• By means of the command InvolutiveOptions one can also choose between two implementations of SyzygyModule: "Maple" and 
"C++".

Examples:
> with(Involutive):


Example 1:


> var := [x,y];

 := var [ ],x y
> L1 := [x^2, x*y-x, y^2];

 := L1 [ ], ,x2 −xy x y2

> SyzygyModule(L1, var);

[ ], ,[ ], ,− +y 1 x 0 [ ], ,0 −y2 −xy x [ ], ,−y2 0 x2

Janet basis of syzygy module with respect to "position over term" ordering:
> SyzygyModule(L1, var, 2);

[ ],[ ], ,0 y2 − +xy x [ ], ,1 +xy x −x2



Example 2:  A sample calculation for modules over the polynomial ring Q[x,y]:


> var := [x,y];

 := var [ ],x y
> L2 := [[x^2,0], [0,y], [x^2,y]];



 := L2 [ ], ,[ ],x2 0 [ ],0 y [ ],x2 y
> SyzygyModule(L2, var);

[ ][ ], ,1 1 -1


Example 3:  Syzygies of a generating set of residue classes of a factor module


> var := [x,y];

 := var [ ],x y
> R := [[x^3,0], [0,x^3]];

 := R [ ],[ ],x3 0 [ ],0 x3

> L3 := [[x^2,0], [0,y], [x^2,y]];

 := L3 [ ], ,[ ],x2 0 [ ],0 y [ ],x2 y
> S := SyzygyModule(L3, var, "mod"=R);

 := S [ ], ,[ ], ,1 1 -1 [ ], ,0 x −x [ ], ,0 0 x3

> PolInvReduce([x,0,0], S, var);

[ ], ,0 0 0


Example 4:  The next example deals with nonrational coefficients:


> alias(omega=RootOf(a^2+a+1,a));

,I ω
> simplify(omega^2);

− −1 ω
> L4 := [x+omega*y+omega^2*z,x*y+y*z+z*x,x*y*z];

 := L4 [ ], ,+ +x ωy ω2 z + +xy yz z x xyz
> SyzygyModule(L4, [x,y,z]);

[ ], ,+ +xy yz z x − − + +x ωy z z ω 0 [ ], ,+yz2 xz2 −z ( )+ − −x ωy z z ω + − −x ωy z z ω [ ], ,0 xyz − − −xy yz z x, , ,[

[ ], ,y2 z2 −yz ω ( )+z ω y ω ( )+ + +2 yz z2 ω y2 2 yz ω ]
> map(a->simplify(evalm([a] &* vector(L4))), %);

[ ], , ,[ ]0 [ ]0 [ ]0 [ ]0

See Also:
InvolutiveBasis, InvolutiveBasisFast, AddRhs, PolTabVar, InvolutiveOptions, PolInvReduce, PolInvReduceFast, Syzygies, 
SyzygyModuleFast, PolResolution, PolResolutionDim, PolEulerChar.




Involutive[SyzygyModuleFast] -  return Janet basis of syzygy module of a generating set of a module over a 

polynomial ring (C++ version)

Calling Sequence:
     SyzygyModuleFast(L,var,ord,mode)

Parameters:
 L    -  list (or matrix) of generators of the submodule
 var  -  list of variables (of the polynomial ring)
 ord  -  (optional) change of polynomial ordering (see below)
 mode -  (optional) sequence of equations specifying options for the computation

Description:

• SyzygyModuleFast computes the minimal Janet basis of the syzygy module of the generating set L of a submodule M of the free 
module of tuples of polynomials in var with respect to a certain ordering by using the C++ version of the command InvolutiveBasis 
(cf. InvolutiveBasisFast). Up to now, only the algorithm for the degree reverse lexicographical ordering (i.e., ord is 2 or 4) is 
implemented in C++.

• All parameters to SyzygyModuleFast have the same meaning as in SyzygyModule.

• The advantage of this command is clearly the enormous speed up. (Note, you cannot interrupt this command from within Maple; you 
have to kill the process "JB" instead.)

• If an equation with left hand side "mod" occurs in mode, then its right hand side is expected to be a list of generators of a submodule 

N of the module M generated by L. In this case, the given generators are internally appended to L, the Janet basis of syzygies for the 

extended list is computed, but the terms in syzygies which correspond to coefficients for the generators of N are neglected. In this 
way, a Janet basis for the syzygy module of the factor module M / N is obtained. See also Example 3 below.

• The right hand side of an equation "denom"=b in mode is expected to be either true or false. The default value is false. If b equals true, 
then the C++ program collects all coefficients by which it divides during the computation of the involutive basis (these arise either as 
contents of polynomials treated by the algorithm or as leading coefficients in the result before normalizing) together with the 
coefficients that occur in some denominator of the input L. After the computation is finished and the result is read into Maple, this list 
of denominators can be obtained via PolZeroSets. See also Example 4 below.

• Using the option "C++" of InvolutiveOptions, the command SyzygyModule is replaced by SyzygyModuleFast for the current Maple 
session.

Examples:
> with(Involutive):


Example 1:


> var := [x,y];

 := var [ ],x y
> L1 := [x^2, x*y-x, y^2];

 := L1 [ ], ,x2 −xy x y2

> SyzygyModuleFast(L1, var);

[ ], ,[ ], ,− +y 1 x 0 [ ], ,0 −y2 −xy x [ ], ,−y2 0 x2

Janet basis of syzygy module w.r.t. "position over term" ordering:
> SyzygyModuleFast(L1, var, 2);

[ ],[ ], ,0 y2 − +xy x [ ], ,1 +xy x −x2



Example 2:  A sample calculation for modules over the polynomial ring Q[x,y]:


> var := [x,y];



 := var [ ],x y
> L2 := [[x^2,0], [0,y], [x^2,y]];

 := L2 [ ], ,[ ],x2 0 [ ],0 y [ ],x2 y
> SyzygyModuleFast(L2, var);

[ ][ ], ,1 1 -1


Example 3:  Syzygies of a generating set of residue classes of a factor module


> var := [x,y];

 := var [ ],x y
> R := [[x^3,0], [0,x^3]];

 := R [ ],[ ],x3 0 [ ],0 x3

> L3 := [[x^2,0], [0,y], [x^2,y]];

 := L3 [ ], ,[ ],x2 0 [ ],0 y [ ],x2 y
> S := SyzygyModuleFast(L3, var, "mod"=R);

 := S [ ], ,[ ], ,1 1 -1 [ ], ,0 x −x [ ], ,0 0 x3

> PolInvReduceFast([x,0,0], S, var);

[ ], ,0 0 0


Example 4:  Keeping track of denominators


> var := [x,y];

 := var [ ],x y
> L4 := [x^2+3*x*y, y-3*x, y^2];

 := L4 [ ], ,+x2 3 xy −y 3 x y2

> SyzygyModuleFast(L4, var, "denom"=true);







, ,







, ,3 +x

10 y

3

-10

3
[ ], ,0 y2 −3 x y [ ], ,−y2 0 +x2 3 xy

> PolZeroSets();

[ ],9 3
> SyzygyModuleFast(L4, var, "N", "denom"=true);

[ ], ,[ ], ,9 +3 x 10 y -10 [ ], ,0 y2 −3 x y [ ], ,−y2 0 +x2 3 xy
> PolZeroSets();

[ ]9

See Also:
InvolutiveBasis, InvolutiveBasisFast, InvolutiveOptions, PolTabVar, PolInvReduce, PolInvReduceFast, PolHilbertSeries, Syzygies, 
SyzygyModule, PolResolution, PolResolutionDim, PolEulerChar.




Involutive[SyzygyModuleGINV] -  Python/C++ version of SyzygyModule

Calling Sequence:
     SyzygyModuleGINV(L,var,ord,mode,opt,rel)

Parameters:
 L    -  list (or matrix) of generators of the submodule
 var  -  list of variables (of the polynomial ring)
 ord  -  (optional) change of polynomial ordering (see below)
 mode -  (optional) string specifying options for the computation
 opt  -  (optional) sequence of equations specifying options for the computation
 rel  -  (optional) equation "mod" = list of generators of a submodule

Description:

• SyzygyModuleGINV computes the minimal Janet basis of the syzygy module of the generating set L of a submodule of the free 
module of tuples of polynomials in var with respect to a certain ordering by using the Python/C++ version of the command 
InvolutiveBasis (cf. InvolutiveBasisGINV).

• All parameters for SyzygyModule are valid for SyzygyModuleGINV with the same meaning as in SyzygyModule. Additionally, 
possible left hand sides for equations in opt are "char", "algext", "transext", "Name", "quiet" with the same meaning as in 
InvolutiveBasisGINV.

• The advantage of this command is clearly the enormous speed up. (Note, you cannot interrupt this command from within Maple; you 
have to kill the corresponding process "python" instead.)

• The right hand side of an equation "denom"=b in mode is expected to be either true or false. The default value is false. If b equals true, 
then the Python/C++ program collects all coefficients by which it divides during the computation of the involutive basis (these arise 
either as contents of polynomials treated by the algorithm or as leading coefficients in the result before normalizing) together with the 
coefficients that occur in some denominator of the input L. After the computation is finished and the result is read into Maple, this list 
of denominators can be obtained via PolZeroSets. See also Example 4 below.

• Using the option "GINV" of InvolutiveOptions, the command SyzygyModule is replaced by SyzygyModuleGINV for the current Maple 
session.

• For more information about ginv, cf. http://invo.jinr.ru and http://wwwb.math.rwth-aachen.de/Janet.

Examples:
> with(Involutive):


Example 1:


> var := [x,y];

 := var [ ],x y
> L1 := [x^2, x*y-x, y^2];

 := L1 [ ], ,x2 −xy x y2

> SyzygyModuleGINV(L1, var);

[ ], ,[ ], ,− +y 1 x 0 [ ], ,0 −y2 −xy x [ ], ,−y2 0 x2

Janet basis of syzygy module w.r.t. "position over term" ordering:
> SyzygyModuleGINV(L1, var, 2);

[ ],[ ], ,0 y2 − +xy x [ ], ,1 +xy x −x2



Example 2:  A sample calculation for modules over the polynomial ring Q[x,y]:


> var := [x,y];

 := var [ ],x y
> L2 := [[x^2,0], [0,y], [x^2,y]];



 := L2 [ ], ,[ ],x2 0 [ ],0 y [ ],x2 y
> SyzygyModuleGINV(L2, var);

[ ][ ], ,1 1 -1


Example 3:  Syzygies of a generating set of residue classes of a factor module


> var := [x,y];

 := var [ ],x y
> R := [[x^3,0], [0,x^3]];

 := R [ ],[ ],x3 0 [ ],0 x3

> L3 := [[x^2,0], [0,y], [x^2,y]];

 := L3 [ ], ,[ ],x2 0 [ ],0 y [ ],x2 y
> S := SyzygyModuleGINV(L3, var, "mod"=R);

 := S [ ], ,[ ], ,1 1 -1 [ ], ,0 x −x [ ], ,0 0 x3

> PolInvReduceGINV([x,0,0], S, var);

[ ], ,0 0 0


Example 4:  Keeping track of denominators


> var := [x,y];

 := var [ ],x y
> L4 := [1/5*x^2+3*x*y, y-3*x, y^2];

 := L4






, ,+

1

5
x2 3 xy −y 3 x y2

> SyzygyModuleGINV(L4, var, "denom"=true);

[ ], ,[ ], ,45 +3 x 46 y -46 [ ], ,0 y2 −3 x y [ ], ,−5 y2 0 +x2 15 xy
> PolZeroSets();
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See Also:
InvolutiveBasis, InvolutiveBasisGINV, InvolutiveOptions, PolTabVar, PolInvReduce, PolInvReduceGINV, PolHilbertSeries, Syzygies, 
SyzygyModule, PolResolution.



