I ntroduction to the Involutive package

Calling Sequence:

Involutive[<function>](args)
<function>(args)

B Description:

¢ The Involutive package provides algorithms for the involutive analysis of ideals in commutative polynomial rings and more generally
for submodules of free modules over polynomial rings. Its main purpose is the analysis of systems of polynomial equations.

« The main algorithm designed by Gerdt and Blinkov is a substantial improvement of Janet’s algorithm for analysing systems of linear
partial differential equations adapted to polynomial equations. Thisis based on the observation that both systems of linear partial
differential equations with constant coefficients and polynomial equations are two different languages to talk about submodules of
free modules over polynomial rings.

» The main algorithm for this package, called InvalutiveBasis produces standard generators for submodules of free modules over
polynomial rings, which are given by any finite set of generators. These can be used as input for various other commands, e. g., to
give quantitative information about the residue class module. They are also used in the command PollnvReduceto produce a normal
form for representatives of residue classes. The polynomial ring is defined over (afield extension of) the rational numbers by defaullt.
By means of the command LnvolutiveOptionsit can be changed to integer coefficients or coefficientsin (an extension of) afield of
non-zero characteristic.

Involutive bases are special Groebner bases, provided e. g. by the Groebner package. The main difference is that involutive division
provides a different strategy to obtain deductions and reduce polynomials. The rules, which element of the involutive basis has to be
applied first, when performing reduction, are rather strict and governed by the concept of multiplicative and nonmultiplicative
variables, i.e. variables which are allowed resp. not allowed as quotients for involutive divisions by an element of theinvolutive basis.
For details see the references below and the explanations in PalTabVar.

« To use afunction of the Involutive package, either define that function alone using the command with(Involutive, <function>), or
define all Involutive functions using the command with(Involutive). Alternatively, invoke the function using the long form
Involutive[<function>].

» The functions available in the Involutive package are the following:

Basic commands:
Lnvol utiveBasis Lnvol uti veBasi sFast Lnvol utiveBasi sG NV
Pol I nvReduce Pol | nvReduceFast Pol | nvReduced NV
Pol TabVar Pol Hil bert Seri es
Fact or Mbdul eBasi s Submodul eBasi s
Further commands for the computation of involutive bases:
ILnvol uti vePreprocess Substitute Pol Zer 0Set s
Commands for special applications:
Pol M nPol y Syzygi es Pol Resol ution
SyzygyhMbdul e SyzygyMdul eFast SyzygyhMdul ed NV
Repres Pol Wi ght edHi | bert Series
Pol Leftlnverse Pol Ri ght I nverse
Pol SyzOp Coefflist
Pol Factorize Not Has/ Has
Commands for module theory:
Pol Sum Pol Di rect Sum Pol I ntersection
Pol SubFact ar Pol CheckHom Pol Def ect
Pol Hom Pol HomHom
Pol Ker nel Pol Coker nel
Pol Ext 1 Pol Ext n




Commands for various invariants derivable fromPol Hi | bert Seri es orSubnodul eHi | bert Seri es:

Pol I ndexRegul arity ~  Pol D nension

Pol Hil bertPolynomal = PolHlbertFunction
Pol HP Pol HE

Pol CartanCharacter ~ Submndul eDi nensi on
Subnmodul eHF Subnmodul eHP

Submodul eHi | bert Function  Subnodul eHil bert Pol ynomi al
Subnmodul eHi | bert Seri es

Alternate Groebner basis commands:

Auxiliary commands:

Leadi nghbnoni al Janet Graph Stats

« For adescription of the basic algorithms, see V. P. Gerdt, "Involutive Algorithms for Computing Groebner Bases', in: S. Cojocaru, G.
Pfister, V. Ufnarovski, "Computational Commutative and Non-Commutative Algebraic Geometry", NATO Science Series, 10S Press,
2005, pp. 199-225; or V. P. Gerdt, "Involutive Division Technique: Some Generalizations and Optimizations®, Journal of
Mathematical Sciences 108(6), 2002, pp. 1034-1051.

« For adescription of the packages Involutive and Janet, see Y. A. Blinkov, C. F. Cid, V. P. Gerdt, W. Plesken, D. Robertz, "The
MAPLE package’Janet’: |. Polynomia Systems, Il. Linear Partial Differential Equations’, in: V. G. Ganzha, E. W. Mayr, E. V.
Vorozhtsov (eds.), Proceedings of Computer Algebrain Scientific Computing CASC 2003, Passau, pp. 31-40 resp. 41-54.

« For amore general description of Janet’s philosophy, see W. Plesken, D. Robertz, "Janet’ s approach to presentations and resolutions
for polynomials and linear pdes', Archiv der Mathematik, 84(1), 2005, pp. 22-37. For more applications, see D. Robertz, "Janet Bases
and Applications’, in: M. Rosenkranz, D. Wang (eds.), "Groebner Bases in Symbolic Analysis’, Radon Series on Computational and
Applied Mathematics 2, de Gruyter, 2007, pp. 139-168.

B Examples:
C>wth(lnvolutive):
[ First we choose the variables of the considered polynomial ringR
> var = [x1,x2,x3];
L var =[x, X2, X3]
We want to calculate the Janet basis for the polynomial ideal | generated by the following polynomials:
> L = [x1+x2+x3-al, x1*x2 + x2*x3 + x3*x1l-a2, x1*x2*x3-a3];
L L:=[x1+x2+x3-al,x1x2+x2x3+x3x1 —a2, x1x2x3 - a3]
The Janet basisis computed w. r. t. degree reverse lexicographical order:
> |B := InvolutiveBasis(L, var);
L IB:=[xl+x2+x3-al,x22+x2x3+x32 —al x2 —al x3 +a2, -a3 +x3° —al x32 +a2 x3, -a3x2 + x3°x2 —al x32x2 +a2 x3x2]
PolTabVar displays the internal data structure which was created by I nvolutiveBasis in particular containing the list of multiplicative
and non-multiplicative variables:
> Pol TabVar () ;
[x1+x2+x3 —al, [x1, x2, x3], x1]
[x22 + x2x3 +x3? —al x2 —al x3 +a2, [*, X2, X3], x2%]
[-a3 +x3° —al x3? +a2x3,[*, *,x3], x3°]

L [~a3x2+x3%x2 —al x32x2 +a2 x3x2, [*, *, x3], x3° x2]

Compute the Hilbert series of the quotient ring R/ | :

> Pol Hi | bert Series();

L 1+2s+2s°+s°

[ Next problem: Find the normal forms of the residue classesin R/ | which contain the following polynomials:

> Pol | nvReduce(x1, IB, var);
Pol I nvReduce(x172, | B, var);
Pol | nvReduce(x173, | B, var);

x2-x3+al
al?-a2-alx3-alx2 +x2x3

L a3+al®-2a2al -al?x3+a2x3 —al?x2 +a2 x2 +al x3x2
r> Pol I nvReduce( x173-al*x1”2+a2*x1-a3, |B, var);




L L

See Also:



I nvolutive] AddRhS] - add unit vectorsasright hand sidesto the entries of a list

Calling Sequence:
AddRhs(L,R)

Parameters:

L - list (of arbitrary entries)
R - (optiond) list (of arbitrary entries)

B Description:

¢ AddRhssubstitutes each entry mof L by mre, wheree isthei-th unit row vector (i.e. alist) if misat positioni inthelist L, and returns
this new list.

« If the optional second parameter Ris provided, then the right hand sides to be assigned to the entries of L are taken fromR

« If L isamatrix, then the method described above is applied to the list of rows of L.

B Example:

C>wth(lnvolutive):

r>»L := [X’\2,X+y,ZA3];

| L =3 x+y, 2]

r > AddRhs(L);

| [¥*=[1,0,0],x+y=[0,1,0],22=[0,0,1]]
r > AddRhs(L, [a,b,c]);

L [¥=ax+y=b z2=q]
r>M:=matrix(mp(i->[i], L));

X
M := +y
L 2
r > AddRhs(M;
L L [X*]=1[1,0,0], [x+y]=[0,1,0],[2°]=[0,0, 1]]
See Also:

ut . .



I nvolutive] Annihilator] - return involutive basis of the annihilator of a submodule of a finitely presented module over a

polynomial ring

Calling Sequence:
Annihilator(p,L,var)

Parameters:
p - (list (of lists of the same length) of) polynomial(s)
L - list (of lists of the same length) of polynomials
var - list of variables of the polynomial ring

B Description:

< Annihilator computes the annihilator of the submodule generated by the residue class(es) of p in the module presented by L over the
polynomial ring with variablesvar , i.e. theideal of those elementsin the polynomial ring which satisfy that their product by the
module generated by the residue class(es) of p liesin the module presented by L.

» Residue classes are taken in the factor module given by the free module of tuples over the polynomial ring invar modulo the
submodule generated by L. This means that the annihilator consists of those elements in the polynomial ring whose associated
multiplication map sends all elements of the module generated by the residue class(es) of p to zero in this factor module.

The entries of L are polynomialsin case of an ideal, i.e. a submodule of the free module of rank one, or lists of polynomials of length
m, representing elements of the free module of mtuples over the polynomial ring. In the first case, p may be apolynomial. Then the
annihilator of the module generated by the residue class of p is computed. If mis greater than 1, then p may be alist of polynomialsin
which case the annihilator of the module generated by the residue class of p is computed. In general, p isalist or alist of lists of the

same length of polynomials according to the value of m Then the annihilator of the module generated by the residue classes of the
elements of p is computed.

¢ Theresult of Annihilator isan involutive basis of the annihilator defined above.

Bl Examples:
C>wth(lnvolutive):

{ Example 1:

>var = [X];

var :=[X]
> Anni hilator(x-1, [x"2-1], var);

[x+1]

Example 2:

>var = [x,y];

[ var :=[x ]

[ > Anni hilator([x”*3, 0], [[x"*4, 0], [0, x"4]], var);
(¥

[ > Anni hilator ([ x*3, x*2], [[x"4, 0], [0, x"4]], var);

[¥*]

Example 3:
>var = [X,y];

var =[x y]
>P:=[x-1, y-2];

P:=[x-1y-2]



r>L = [x"2-1, y*Xx-2*x+y-2];

L:=[¥ -1 yx-2x+y-2]

[> Anni hilator (P, L, var);
[x+1]

Example 4:
[> var = [x,y];

var =[x y]
r>P:

[[x"2-1, y-2], [1, O]];

L P:=[[¥*-1y-2][10]]
>L = [[x+1, O], [0, y*x-2*x+y-2]];
[ L :=[[x+1,0] [0 yx-2x+y-2]]
[>Annihilator(P, L, var);
[x+1]

B See Also:




Involutive[AssertinvBasig| - assurethe system that given (lists of) polynomials form a Janet basis

Calling Sequence:
AssertinvBasis(L,var,ord,mode)

Parameters:

L - list (or matrix) of generators of the submodule

var - list of variables (of the polynomial ring)

ord - (optional) change of monomial ordering (see below)
node - (optional) string specifying options for the computation

B Description:

e Theinternal result of the command Assertl nvBasisis that the data structure for the current involutive basisis set up such that
commands likePolHilbertSeries, FactorModuleBasis, Pol TahVar, etc. can be invoked.

« All parameters to Assertl nvBasis have the same meaning asin InvolutiveBasis.

¢ AssertlnvBasisreturnsthelistL.

« Onetypical situation where AssertinvBasisis used is to make an earlier computed involutive basis after at |east one further call of
I nvolutiveBasis again to the current involutive basis without recomputing it.

¢ Another, usually more important, use for Assertl nvBasisis for big polynomial systems. In this case one can use InvolutiveBasisFast
and apply AssertinvBasisto the result defining it as the current involutive basis in Maple.

Bl Examples:
C>wth(lnvolutive):

{ Example 1: Working with two Janet bases

[>var = [x,v];
var =[x y]
[>L1 i=[x-yl
L1:=[x-y]
£ >J1 := InvolutiveBasis(L1, var):
> Pol H | bert Series(t);
+1—t
[>L2::[[Xv-y]v [va]]v
L2:=[[x -] [y ¥]
C>J2 := InvolutiveBasis(L2, var):
> Pol Hi | bertSeries(t);

t
| 2+21—t
C > AssertlnvBasis(J1, var):

r > Pol Hil bertSeries(t);
1 t
—
L 1-t

Example 2: Setting up the internal data structure after the use of I nvolutiveBasisFast

[>var = [X,Y,2];
var =[xy, Z]
r>L :=[[x"2, -x*y], [y*3, x"2], [x*y*z, x*y"2]]:

L L= [, %yl [y> X1, [xyz xy?]]




r> 1B := InvolutiveBasi sFast(L, var);
1B:= [[¢, xy] [y’ @) Dxyz. xy’) [y’ @) [xy 22 @ YL [0, X 43 2, [xy 22 @)

C > AssertlnvBasis(IB, var):
r > Fact or Modul eBasi s(var);
2

1

gy y 1 x¥ xy x xy x Xy X Xy X8
+ +

r > Pol Hi | bertSeries(t);

1 1
2+6t+11t° +1587 +17t" +° 7 T+ 2
1-t (1-t)

+ + + , + + + + + +
ffh—z 1-z 1-z 1-z 1-z 1-7'1-z 1-z 1-z 1-z 1-z 1-z (1-y)(1-2

:



I nvol utive[CoeffL iSt] - expressa (tuple of) polynomial(s) in a given vector space basis of monomials

Calling Sequence:
CoeffList(p,var,B)

Parameters:
p - (tuple of) polynomial(s) invar to be expressed
var - list of variables (of the polynomial ring)
B - vector space basis given as list of monomials or generating function (result of FactorModuleBasis)

B Description:
» CoeffList returnsthelist of coefficients of the unique representation of p in the vector space basisB.

* The parameter p is either apolynomial in the variablesvar or atuple given asalist of polynomialsinvar .

var isthelist of variables of the polynomia ring.

« ThelistBis expected to be aresult of a previous call of FactorModuleBasis. If p is apolynomial, then B is expected to be a factor
module basis computed for aresidue class module of the polynomial ring invar . If p isalist of polynomials of length m, then Bis
expected to be a factor module basis computed for afactor module of the free module of tuples of polynomialsinvar of rank m

If p isin the span of the vector space basisB, then theresult isthe list of coefficients of the unique representation of p in the basis B.

« If pisnot in the span of B, then the result is the monomial in p which is not an element of B and which is encountered first by
CoeffList. If pisalist of polynomials, then the result is accordingly alist of the same length with exactly one non-zero entry which is
amonomial invar (cf. Example 2).

« If Bisalist, i.e. the vector space basisis finite, then the resulting list has as many entries asB, and these entries are in the ground field.

« If Bisgiven as generating function, e.g. Bis the sum of monomials according to a disjoint cone decomposition of a factor module,
then thei-th entry of the resulting list is a polynomial in the multiplicative variables for thei-th conein the basis B, i.e. a polynomial in

the variables occurring in the corresponding denominator, where the cones are sorted by their vertices with respect to the
degree-reverse lexicographic ordering (cf. Example 3). The number of entries equals the number of conesin this case.

Bl Examples:
C>wth(lnvolutive):

{ Example 1:

>var =[xy, z];

=[xy
> L o= [x+y+z, x*y+y*z+z*x, x*y*z-1];
L= [x+y+zXxy+yz+zxxyz—1]
> | nvol utiveBasis(L, var);

[x+y+zy +yz+2,2°~1,2°y-y]

\

F

Fact or Modul eBasi s(var) ;

Fi=[12y,2,yz 2’y
p a + b*z + c*y + d*z"2 + e*y*z + f*z/"2*y,

[
[
[
[
[ p:=a+bz+cy+dz? +eyz +f 2y
@
-
|

\

> CoeffList(p, var, F);

[abcdef]
The next polynomial is not in the span of F.
p = X+1;
p:=x+1
> CoeffList(p, var, F);




Example 2:

\Y
<
o

= 0%y
var =[x V]
> L2 ;= [[x*2-1, 0], [x*y, x*y], [0, y~2-1]];
. . L2:=[[x*~ 1,0], [xy: xy], [0,y* - 1]]
> I nvol utiveBasis(L2, [X,Y]);

[[0,y* - 11, [xy, xy}, [y, ], [¥* = 1,0, [y* - ¥: O], [0, y* x= ]

Fact or Modul eBasi s(var);

F:=1[0, 1], [0,y],[0,%], [0, xy}, [1, O], [y O}, [ O, [y?, O]]
[ 1+3*y, 5*x+7*x*y];

\Y
T
1

\%
©
1

p:=[1+3y,5x+7xy]
> CoefflList(p, var, F);

[0,0,57,1,30,0]

1M

The next tupleis not in the span of F.
>p o= [1+yn2, xM2];

| | p:=[1+Y2 X
r > CoefflList(p, var, F);
I [0,5%]
Example 3:
[> var = [X,vy];
var =[x ]

r>L = [x"2*y-Xx, x*y"2-y];
. L:=[Cy-xxy’ -]

r > Invol utiveBasi s(L, var);
L [xy* -y, ¢ y=x
r > F := Factor Mbdul eBasi s(var);
oL, X
L a 1—y+ 1-x XY
r > Fact or Modul eBasi s(var, "C');
L [1,% Xy, ¥]
[> CoeffList(3 + 2*x + 7*x*y + (-12)*x"2, var, F);
[3,2,7,-12]
r > CoeffList(3*y"2 + 2*x + 7*x*y + (-12)*x"5, var, F);
. [3y% 2 7,-12x°]
See Also:



I nvol utive[Factor ModuleBasi S] - return avector space basis for theresidue class module (or a generating function
for it)

Calling Sequence:
FactorModuleBasis(var,mode)

Parameters:

var

list of variables (of the polynomial ring)

mode - (optional) string specifying options

B Description:

FactorModuleBasisreturns a vector space basis for the residue class module of the free module over the polynomial ring modulo the
submodule generated by the Janet basis of the last call of InvolutiveBasis, in case the factor module is finite dimensional as a vector
space.

If the factor module isinfinite dimensional, a generating function is produced whose monomia summands are the representatives of
the standard monomial basis vectors of the residue class module: A term of the form m/((1-x)...(1-%,)) g stands for the residues of those
vectors which, according to the geometric series expansion, are all multiples of mg by any monomial in the variablesx,....x,. Herem
stands for amonomial in the indeterminatesvar and g for thei-th standard basis vector of the free module. See also the explanation of
the option "G" below.

var isthelist of variables of the polynomial ring that was given as parameter to | nvolutiveBasisbefore.
The optional argument node is a string which may contain the letters"C", "G", "L" and "M".

If the letter "G" is present in npbde, but the letter "C" is not, then FactorModuleBasisis forced to return a generating function as
described above even if the factor module is finite dimensional (cf. Example 3 below).

If the factor module isinfinite dimensional and the letter "C" is contained in node, then the numerators mof the resulting generating
function are returned in alist (cf. Example 2 below). If additionally the letter "M" is present in node, then the result of
FactorModuleBasisis alist of lists[m v], wheremis the numerator as above and vis the list of multiplicative variables for the cone
with vertexm

The presence of theletter "L" in node only has an effect if InvolutiveBasisFast or InvolutiveBasisGINV has been called before. In this
case FactorModuleBasis determines its result using the output data of the last call of I nvolutiveBasisFast resp. I nvolutiveBasisGINV,
whichever was called last. This meansthat in this case it is not necessary to update the internal data structure for the current involutive
basis using AssertinvBasis before calling FactorModuleBasis (cf. Example 4 below). However, the user must be aware that the
current involutive basis in Maple may then be different from the involutive basis which was computed by the last call of

I nvolutiveBasisFast resp. | nvolutiveBasisGINV, so that the results of Factor M oduleBasiswith and without option "L" are in general
different.

The resulting basis contains monomials with coefficient 1. Thelist is sorted using degree reverse lexicographical ordering ("position
over term” in the module case).

For more information about factor module bases, see W. Plesken, D. Robertz, "Janet’ s approach to presentations and resolutions for
polynomials and linear pdes’, Archiv der Mathematik, 84(1), 2005, 22-37.

Bl Examples:
C>wth(lnvolutive):

Example 1:

>var = [X,y];
var =[x Y]

L :=Dé xy% vl

> L o= [xM2, x*y"r2, yN3];



> Invol utiveBasis(L, var);

L [,V xy’]

> Fact or Modul eBasi s(var) ;

L (L, %Y, xy]
L Note, the sum of the coefficients of the Hilbert seriesis the length of the basis for the residue class module:
r > Pol Hi | bert Series();

L 1+2s+2¢
Example 2:
[ Hereis an example, where the factor module is infinite dimensional. FactorModuleBasisreturns the corresponding generating
function:
[> var = [x,y];
var :=[x Y]
[ > L= Dyl
L:=[xy]
[ > | nvol utiveBasis(L, var);
[xy]
> Fact or Mbdul eBasi s(var);
[ 1 X
—_
1-y 1-x
[ > Fact or Modul eBasi s(var, "C');
[1.x]
{ Example 3:
[ Example for amodule over the polynomial ring Q[x,y]:
[> var = [x,y];
: var := [x ]

>L:=[[x"2, 0], [y*2, 0], [0, x*y"2], [0, x"3], [0, y"4]];
L L:=[[¢, 0], [y*, 0, [0, xy°], [0, %], [0, y"]]

> Invol utiveBasis(L, var);

L _ _ [[y? 0], [X, 01, [0, xy?], [xy?, O], [0, X°], [0, Y], [0, 5C y°]]
Pol Hi | bert Series();

1
\Y

2+4s+45% +25°

1
\%

Fact or Modul eBasi s(var) ;
L 100,11, [0,y [0,54, [0, Y], [0, xy], [0,5%1, [0, y°1, [0, X% ¥, [1, O, [y; O], [x O, [xy; O]]
Fact or Modul eBasi s(var, "G');
[y+1+xXy+X Y +y2 +y+1+xy+X -y +¥]

1
v

Example 4:

> restart;
> w th(lnvolutive):
> | nvol utiveBasi sFast ([ x*y], [X,VY]);

m T

[xy]
> Fact or Modul eBasi s([x,y], "L");
1 X
—_
L 1-y 1-x

Bl See Also:
CoeffList.




I nvol utive[Groebner Basi S] - return minimal Groebner basis of a submodule of a free module over a polynomial ring

Calling Sequence:
GroebnerBasis(L ,var,ord,mode,opt)

Parameters:
L - list (or matrix) of generators of the submodule
var - list of variables (of the polynomial ring)

ord - (optional) change of monomial ordering
mode - (optional) string specifying options for the computation
opt - (optional) equation specifying options for the computation

Bl Description:

« GroebnerBasisreturns the minimal Groebner basis of a submodule of the free module of m-tuples of polynomials given by the
generatorsinL with respect to a certain ordering. The default ordering is degree reverse lexicographical. The leading coefficientsin
the resulting Groebner basis are normalized to 1.

« The Groebner basis is extracted from the involutive basis of the given submodule (which is, in general, aredundant Groebner basis
because of the separation of the variables into multiplicative and non-multiplicative ones). Hence, GroebnerBasis passes its arguments
to InvolutiveBasisand extracts the minimal Groebner basis from this result. Therefore, Janet’ s data (see PolTahVar) contains
information about the involutive basis of the given submodule.

« All parameters to GroebnerBasis have the same meaning asin InvolutiveBasis
» The output isalist containing the Groebner basis for the submodule generated by L with respect to the chosen ordering.

* By means of the command LnvalutiveOptions one can al so choose between two implementations of GroebnerBasis "Maple" and
"CH+".

B Examples:

C>wth(lnvolutive):
[>var =[x, Y, 2];

var =[xy, 7]
[ > L o= [x+y+z, x*y+y*z+z*x, x*y*z-1];

L= [x+y+zXxy+yz+zxxyz—1]
> I nvol utiveBasis(L, var);

L [X+y+z Y +yz+7°, 2 -1,y + 2]
> GroebnerBasi s(L, var);

L [X+y+zy+yz+7% 22— 1]
r > Pol TabVar ();

[x+y+z[xy 2.4
Y +yz+2,[*,, 2. Y]
[Z2-1,[** 2,2%

L L [y+2y[*, %2, 2°Y]

See Also:




I nvolutive] Groebner BasisFast] - return minimal Groebner basis of a submodule of a free module over a polynomial

ring (C++ version)

Calling Sequence:
GroebnerBasisFast(L ,var,ord,mode,opt)

Parameters:
L - list (or matrix) of generators of the submodule
var - list of variables (of the polynomial ring)

ord - (optional) change of polynomial ordering
mode - (optional) string specifying options for the computation
opt - (optional) equation specifying options for the computation

B Description:

» GroebnerBasisFast computes the minimal Groebner basis of a submodule of the free module of m-tuples of polynomials given by the
generatorsinL with respect to a certain ordering using InvolutiveBasi sFast instead of InvolutiveBasis (cf. GraehnerBasis). Up to now,
only the algorithm for the degree reverse lexicographical ordering (i.e.or d is2 or 4) isimplemented in C++. If GroebnerBasisFast is
called choosing a different monomial ordering, then InvolutiveBasisis applied instead of InvolutiveBasisFast.

« All parameters to GroebnerBasisFast have the same meaning as in InvolutiveBasi sFast.

» The advantage of thiscommand is clearly the enormous speed up. (Note, you cannot interrupt this command from within Maple; you
have to kill the process"JB" instead.)

» Using the option "C++" of InvolutiveOptions, the command GroebnerBasisis replaced by GroebnerBasisFast for the current Maple
session.
B Examples:

C>wth(lnvolutive):
[> var = [X,Y,2z];

var =[xy, 2]

[ > L = [x+y+z, x*y+y*z+z*x, x*y*z-1];

L:=[x+y+zxy+yz+zxxyz—-1]

[ > | nvol utiveBasi s(L, var);

[X+y+z Y +yz+2, 22~ 1, y+2°y]

[ > & oebner Basi sFast (L, var);

[X+y+zy+yz+7,2~1]




I nvolutive] Groebner BasiSGINV] - Python/C++ version of GroebnerBasis

Calling Sequence:
GroebnerBasisGINV(L ,var,ord,mode,opt)

Parameters:
L - list (or matrix) of generators of the submodule
var - list of variables (of the polynomial ring)

ord - (optional) change of monomial ordering
mode - (optional) string specifying options for the computation
opt - (optional) sequence of equations specifying options for the computation

Bl Description:
« GroebnerBasisGINV computes the minimal Groebner basis of a submodule of the free module of mtuples of polynomials given by
the generatorsin L with respect to a certain ordering using InvolutiveBasisGINV instead of InvolutiveBasis (cf. GroebnerBasis), i.e.

GroebnerBasisGINV is aversion of the command GroebnerBasiswhich uses the C++ module ginv for Python to perform the
involutive basis computation.

* The parametersL, var , or d, and node have the same meaning as in GroebnerBasis

« The advantage of thiscommand is clearly the enormous speed up. (Note, you cannot interrupt this command from within Maple; you
have to kill the corresponding process "python” instead.)

« Possible left hand sides of the optional equationsopt are the strings "char”, "algext", "time", "Name", "denom", "donotread",
"MovedBound", and "QlengthBound".

« If an equation "char"=cis provided in opt by the user, thencis expected to be zero or a prime number. In this case, the involutive
basisis computed in characteristic ¢ (cf. Example 2). The purpose of this option isto compute just one Groebner basis in characteristic
¢ If further commands like PalMinPaly shall be applied afterwards, the characteristic of the ground field must be changed by using
the command LnvolutiveOptions

The right hand side of an equation "algext"=pinopt isexpected to be a univariate polynomial in an indeterminate { which does not
occur invar . The coefficients of p must be algebraic over the ground field in the sense that they are rational expressions in RoatOf
and indeterminates & used in the right hand sides of other equations "algext"=qinopt . This extends the ground field (defined so far)
by ¢ which has minimal polynomial p, i.e. every occurrence of { inL is subject to the relation p= 0 (cf. Example 3).

o If "time"=tisgiveninopt , thentis expected to be a non-negative integer. In this case, the involutive basis computation is stopped
after t seconds. If the program was not able to construct the result beforet seconds, then awarning is printed (cf. Example 4).

« Theright hand side of an equation "Name"=sis expected to be a string. GroebnerBasisGI NV appendssto the default name for the
temporary file to which the input for ginv is written.

« For more information about ginv, cf. http://invo.jinr.ru and http://wwwb.math.rwth-aachen.de/Janet.

B Examples:
C>wth(lnvolutive):
{ Example 1:
>var = [X,Y, z];

var =[xy, Z]
L :=[x+y+zXy+yz+zxxyz—1]
> I nvol utiveBasi sG@ NV(L, var);

[X+y+zy +yz+ 7,2~ 1,y ~y]
> G oebnerBasi sA NV(L, var);

[ > L o= [ x+y+z, xX*y+y*z+z*x, x*y*z-1];
[



[X+y+zy+yz+7,2°~1]
Example 2:

L
[> var = [x,Yy, z];
=[xy
[ L = [x+2*y+3*z, x*y+2*y*z+3*z*x, x*y*z-1];
L :=[x+2y+3zXxy+2yz+3zx xyz-1]
[ > GroebnerBasi sA@ NV(L, var, "char"=7);

\%

[x+2y+3zy?+ 22 yZ2+47° +5 24+ 3y+27]

Example 3:
>var = [X,v];
=[xyl
> al i as(onega=Root Of (Z*2+Z+1));
W
sinplify(omega3);
1
> factor(zeta”3+onmega*zeta+l, omega);
L C+wi+l

r > mnpolyl : = zet a®3+onega*zet a+l;

L minpolyl:=3+wl+1
r>L := [x"2-y"2, y"3-zeta*x"3];

L L:=DE- Yy -
> GroebnerBasi s NV(L, var, "algext"=m npolyl);

L [Xz_y2!Xy2+(<2+(*))y3!y4]
r>J := & oebnerBasi sA NV(AddRhs(L), var, "al gext"=ni npolyl);

=%”f=mmmfﬂf+mf=Hd‘H%¢ %

R e B s e S R
N I AT 00 T - - e
> sinplify(remexpand(rhs(J[3])[1] * L[1] + rhs(J[
L y'

Bl See Also:

InvolutiveBasis, InvalutiveBasisGINV, AssertinvBasis, GroebnerBasisFast, InvolutiveOptions Pol TabV ar, FactorModuleBasis,
| PollnvReduce PollnvReduceFast, Syzygies SyzygyModule PolHilbertSeries

* L[2]), mnpolyl, zeta));




I nvolutive[InvolutiveBasis] - return the (unique) minimal Janet basis of a submodule of a free module over a

polynomial ring

Calling Sequence:
InvolutiveBasis(L ,var,ord,mode,opt)

Parameters:

L
var
ord

- list (or matrix) of generators of the submodule
- list of variables (of the polynomial ring)
- (optional) change of monomial ordering (see below)

mode - (optional) string specifying options for the computation

opt

- (optional) equation specifying options for the computation

B Description:

.

I nvolutiveBasisreturns the (unique) minimal Janet basis of the submodule of the free module of mtuples of polynomials given by the
generatorsinL with respect to a certain ordering. The default ordering is degree reverse lexicographical. I nvolutiveBasisis the main
function of the packagelnvolutive

The polynomial ring is defined over (afield extension of) the rational numbers by default. By means of the command
InvaolutiveOptionsit can be changed to integer coefficients or coefficientsin (an extension of) afield of non-zero characteristic. If the
domain of coefficientsisafield, then the leading coefficients in the resulting Janet basis are normalized to 1.

The entries of L are polynomialsin case of anidedl, i. e. a submodule of the free module of rank one, or lists of polynomials of length
m, representing elements of the free module of m-tuples over the polynomial ring. If L is a matrix, then the generators are extracted
from therows of L.

The parameter var isalist specifying the variables of the polynomia ring. If var is[x, ...,%], then the ordering of the variablesis
defined to bex, >x, > ... >x.. In the module case, the monomial ordering is extended to tuples giving higher priority to standard basis
vectors whose non-zero component comes first. The sequence of priority can be changed by appending a permutation of the numbers
1to mto thevariablesinvar (cf. Example 6 below).

The output is alist containing the Janet basis for the submodul e generated by L with respect to the chosen ordering.
I nvolutiveBasis saves the information in an internal data structure which can be displayed by PalTahVar.

As optiond third parameter natural numbers from 1 to 4 are accepted. If or d = 1, pure lexicographical ordering (elimination ordering)
isapplied. In caseor d = 2 the degree reverse lexicographical ordering is chosen. In the module case these two possibilities assume
"position over term” order, i.e. the leading term of an mtuple is the leading term of the first non-zero entry. If one prefers to work witr
the "term over position™ order, i.e. the leading term of anmtuple is the greatest of the leading terms of the non-zero entries, thenor d
=1isreplaced by or d =3 andor d =2 by or d = 4. The default isor d = 4. (Further modifications concerning degrees are described
below. For examples that illustrate the dependence of the leading monomials of a polynomial on the choice of ordering see
LeadingMonomial.)

In addition to the orderings described in the preceding paragraph, a block (elimination) ordering can be selected by partitioning the list
of variablesvar . In this case the argument var isalist of lists ("blocks") of variablesand or d isalist of natura numbers from 1to 4
whose length equals the number of blocks. Two monomials are compared w. r. t. the block ordering as follows. The variables of the
first block are examined first. If the according parts of the two monomials are different, the ordering specified by the first number in
or d decides which monomial is greater. If the monomials are equal when considering only the first block of variables, then the
ordering specified by the second number in or d is applied to the second block of variables, if the corresponding parts of the
monomials are different, and so on (cf. Example 7 below). Note that in the module case, a"position over term" order and a “term over
position™ order cannot be mixed.

The fourth argument node is astring consisting of letters "N" or "S".

If the letter "N" is present in node, leading coefficients in the Janet basis are not normalized to 1.



.

If the letter "S" is present in node, the program uses simplify instead of expandin the normal form procedure. If the polynomialsin
the input L contain nonrational coefficients, more precisely, if the ground field contains algebraic elements over the rational s (RootOf,
cf. Example 4 below), then simplifyis used instead of expand automatically. Note, the program can also work with pure
transcendental extensions, i. e. algebraically independent parameters. (If the parameters are algebraically dependent, there is always
the danger of division by zero.)

Possible left hand sides of the optional equationsin opt are the strings "time" and "Groebner".

o If "time"=tisgiveninopt, thentisexpected to be a non-negative integer. In this case, the involutive basis computation is stopped
after t seconds. If the program was not able to construct the result beforet seconds, then awarning is printed (cf. Example 8).

« If "Groebner"=hisgivenin opt , then bis expected to be a boolean value. If bistrue, then only the reduced Groebner basis for the
module generated by L (w.r.t. the chosen monomial ordering) is returned. The Groebner basisis extracted from the computed Janet
basis. The default value for bisfalse.

.

The ground field over which involutive bases are computed is the field of rational numbers by default. The characteristic of the
ground field can be changed by InvolutiveOptions It is also possible to compute involutive bases of the ring of integers. By means of
the command LnvalutiveOptions one can also choose between three implementations of I nvolutiveBasis "Maple", "C++", and
"GINV".

» One can specify aright hand side for each generator in order to let | nvolutiveBasis perform any operation on both left and right hand
side. Right hand sides are assigned by an equal sign (cf. Example 2 below), usually they are symbols, but also tuples are possible, for
instance, if one wantsto construct afree resolution. A list P_HOMis constructed that contains all expressions being right hand sidesin
some step of the computation that correspond to zero left hand side. Thislist is used to find the syzygies among the generatorsin L,
seeSyzygies

« For adescription of the basic algorithms, see V. P. Gerdt, "Involutive Algorithms for Computing Groebner Bases', in: S. Cojocaru, G.
Pfister, V. Ufnarovski, "Computational Commutative and Non-Commutative Algebraic Geometry”, NATO Science Series, 10S Press,

2005, pp. 199-225; or V. P. Gerdt, "Involutive Division Technique: Some Generalizations and Optimizations', Journal of
Mathematical Sciences 108(6), 2002, pp. 1034-1051 (cf. Involutive).

I nvolutiveBasis allows for assigning degrees other than 1 to the variables and also, in the module case, degrees other than 0 to the

standard basis vectors of the free module. The syntax for thisisto changevar from[x, ..., x] to [x=d,, ..., x=d,] respectively to [x=d,
. %=d, 1=, ..., mFg ] inthe module case. Hered is the degree of x and g the degree of theith standard basis vector [0,...,0,1,0,...0]

Wlth thelin thelth position. The d must be natural numbers, theg integers. Of course, the Janet basis will in general be different from

the standard one. Note, to continue with these degrees one has to work with PolWeightedHilbertSeriesinstead of PolHilbertSeries For
examples that deal with leading monomialsin the case of non-standard degrees see L eadingMonomial.

Examples:
C>wth(lnvolutive):
{ Example 1:
[> var = [X,Y,z];
=[xy
[ = [x+y+z, Xx*y+y*z+4+z*x, x*y*z-1];
=[x+ y+2z Xy+yz+zx Xyz—1]

> | nvol utiveBasi s(L1, var);

L [x+y+z Yy +yz+7°, 22— 1, y+2°y]
r > Pol TabVar () ;

[X+y+2z[xy 2, X
Y +yz+2°,[*,y, 2, ¥]
[Z2-1,[** 2,2%

L [y+2y[*, %2, 2°Y]
r > Invol utiveBasi s(L1, var, 1);

L [Z-1,y+Zy Y +yz+ 72 x+y+7]

Example 2: A sample calculation for modules over the polynomial ring Q[x)]:




Mo

> L2a := [[x*2-1, 0], [x*y, x*y], [0, y*2-1]1];
_ _ L2a = [[X* - 1,0], [xy, xy], [0, y* - 1]]
> I nvol utiveBasi s(L2a, [X,Yy]);

[[0, y2 - 1]! [Xy, Xy]! [yZ, Xz]l [X2 -1 0]! [y3 -y O]v [O! _X+y2 X]]
The generators of the submodule can aso be specified in matrix form:
> L2b :=matrix(3, 2, [[x*2-1, 0], [x*y, x*y], [0, y*2-1]]);

-1 0

L2b =5 Xy Xy

0 y-1
> | nvol utiveBasi s(L2b, [X,Yy]);
[0,y = 1], [xy, xy, [y>, X1, [X* = 1,01, [y* ~ ¥, 0], [0, ~x+y* X]]

Next we see the last example with right hand sides:
> L2c := [[x*2-1, 0]=a, [x*y, x*y]=b, [0, y*2-1]=c];
L2c:=[[¥*-1,0]=a, [xy,xy]=b, [0,y* - 1]=c]

> | nvol utiveBasis(L2c, [x,y], 2);

[[0,y*-1]=6 [0, x+y*X]=xG [0, -] =xc—xy?a+yx*b-yb -x* ¢ [0, 5 +y* X*] =X G [y, X Y] = -ya + xb,
[xy, xy]= ¥’ ¥’ b+xy*a+y’b+(-a-c)yx +x*b +yx’c [¥* - 1,0] = a]

> Syzygi es(L2c, [x,Y]);

[b+y*X*b-xy’a-y’ b +(c+a)xy -xX' b -yx’ ¢ xb+ycx' +bx® by’ +ay’»* +(-a-c)yxX’ +y’bx
yeb+y? 3 c+(-a-c)y¥? x-yb -y x*b +y* xa +y* b]

>Ll2d :=[[x*2-1, 0]=[1,0,0], [x*y, x*y]=[O,1,0], [O, y~2-1]=[0,0,1]];

L2d :=[[x*-1,0]=[1,0,0], [xy,xy] =[0, 1, 0], [0, y* - 1] =[O0, 0, 1]]

> | nvol utiveBasis(L2d, [x,y], 2);

[[0,y*=1]=[0,0,1], [0, x+Y*X] =[0,0,], [0,X* = X] = [y’ % X’ y = ¥, = +X], [0, ¢ +Y* ] = [0, 0,C], [y: X° y] = [, O],
[y xy] = [xy+Y° % ¥ 3¢ +y? +3¢,%° y=xy], [¥* — 1, 0] =[1,0, 0]]

> Syzygi es(L2d, [x,y]);

[
[ x+xy, Y3 -2 =3 +1, 5y +xyl, DY =3y, %+ =y )3 +yP % 2y + Xy, [ x+ xy*, ¥ y—y = yP +y2 P B - yP X
]

Note, these syzygies can be interpreted as a matrix representing a homomorphism of the free module of rank 1 into the free module of
rank 3, whose cokernel is the module generated by L2d.

Example 3: Algebraically dependent parameters:

> L3 1= [x"24y"2 - Pl, x"2*yn2 - P2, x*y"3-x73*y - P3];
L3:=E+y? - PLY X - P2y’ x- X’ y—P3]

\%

I nvol utiveBasi s(L3, [x,Yy]);

[1]

\%

Pol Zer oSet s() ;
[P13 P2- 4P2? P1- P3? P, P12 P2- 4P2? - P3% P3P1% P2- 4P3P2° P1- P3* P1]
map(factor, %;

\

[P1(P1? P2- 4P2% - P3?), P1? P2- 4 P2% - P3% P1P3(P1? P2- 4 P2* - P3%)]
> s = P1r2*P2- 4* P2/ 2- P32,
s:=P1*P2-4P2° - P3*
> expand(subs([ P1=x"2+y"2, P2=x"2*y~2, P3=x*y"3-x"3*y], s));
0

Example 4: The next example deals with nonrational coefficients:

> al i as(onega=Root Of (a”2+a+1, a)):
> sinplify(onega”2);
-1-w
> L4 ;= [ x+omega*y+onmegat2*z, x*y+y*z+z*x, x*y*z-1];
L4 = [x+ wy+w?z Xy+yz+2zx xyz—1]



r > InvolutiveBasis(L4, [X,Y, z]);
2 1 1

2 2 2 2 2 3 2 1 4 4
+Wy-Z-Zw, Y’ +2yz+2yzw +7° +27 w +Z ,5+5m+yz +:'32 +52 w,g(—1+w)(52+4zw—22 +3y-7"w)
> | nvol utiveBasis(L4, [Xx,y,z], "N');

[X+wy+(-l-w)z -wy* +2yz+(1+w)Z% 2-w-3yZ* +(-1-2w) 2%, By+ (4w -5)z+(2+ w) z*]
Example 5: Assigning weights ("degrees") to the variables:

r> L5 := [x"2-y"3, x"N4+y"6];
L5:= [ -y3 X' +y°]
> | nvol utiveBasi s(L5, [x=3,y=2]);
i , | , D2 -Y. Y %]
r > Pol Wi ght edHi | bert Seri es([x=3,y=2]);
1+53+35+S7 +59 +Sll +313 +52 +S4 +SG +38 _'_510

Example 6: Changing the priority of tuple entries

r>L6 :=[[x"2,y,0], [x"3,y"2,x-y]];

! . . L6:= [,y 0], [y, x=]]
r > Invol utiveBasis(L6, [x,y], 2);

L . . [[0, " +xy, ~x+Y], ¢, ¥ 0]]
r > InvolutiveBasis(L6, [x,V,2,3,1], 2);

[ =%y, 0,x=y], [¥%, v 0]]

Example 7: Block ordering

> L7 1= [X*y-z"3, X*y*z-x"2*y~2];
L7:=[xy-Z% xyz- ¥*X*]
> | nvol utiveBasi s(L7, [X,Y,2z]);
[xy+Z% =Cy+Z8x Xyz+y? x4, -Cy+ 28X
> I nvol utiveBasis(L7, [[x,y].[z]], [4 4]);
[28- 7" 2P x— 2" x xy- 2]

2 2x%y-x2y7]

Example 8: Stop computation of involutive basis within a prescribed time bound
r>1L8 :=[seq(a[i]"3-a[i+1]-1, i=1..6),seq(a[i]"2-a[i-1]+1, i=2..3)];
3 3 3 3 3 3 2 2
i L8:=[a -8-18 -a-18 -8-13 -&-1& -&-1a -3 -1 -a+1.a -a+1]
[ > | nvol uti veBasi sgLS, Fseq(a[i 1, i=1..7)], "time"=5):

L War ni ng, conputation of involutive basis stopped due to time restriction.

Bl See Also:
- " I Lt . . . . . . |
L FactorModuleBasis, PalHilbertSeries PolWeightedHilbertSeries Syzygies SyzygyMaodule PolCartanCharacter, Has




I nvolutive[l nvolutiveBasisFast] - return the (unique) minimal Janet basis of a submodule of a free module over a

polynomial ring (C++ version)

Calling Sequence:
InvolutiveBasisFast(L,var,ord,mode,opt)

Parameters:

L

var

ord

- list (or matrix) of generators of the submodule
- list of variables (of the polynomial ring)
- (optional) change of monomial ordering

mode - (optional) string specifying options for the computation
opt

- (optional) sequence of equations specifying options for the computation

B Description:

.

I nvolutiveBasisFast invokes the C++ version of the command LnvolutiveBasis Up to now, only the algorithm for the degree reverse
lexicographical ordering (i.e. or d is 2 or 4) isimplemented in C++. If InvolutiveBasisFast is called choosing a different monomial
ordering, then InvolutiveBasisis applied internally to the same data.

The parametersL, var , or d, and node have the same meaning as in lnvolutiveBasis

The advantage of this command is clearly the enormous speed up. (Note, you cannot interrupt this command from within Maple; you
have to kill the process"JB" instead.)

The output of the C++ program is read into the current Maple session. To continue with commands that expect a previous run of
InvolutiveBasis (likePal TabV ar, FactorModuleBasis PolHilbertSeries, etc.) the internal data structure for the involutive basis hasto
be set up by the command AssertlnvBasis (cf. example below).

Possible left hand sides of the optional equationsopt are the strings "char”, "time", "Name", "denom", and "donotread".

If an equation "char"=cis provided in opt by the user, thencis expected to be zero or a prime number. In this case, the involutive
basisis computed in characteristic c(cf. Example 2). The purpose of this option isto compute just one involutive basisin
characteristic ¢ If further commands like PolMinPaly shall be applied afterwards, the characteristic of the ground field must be
changed by using the command InvolutiveOptions

If "time"=tisgiveninopt , thentis expected to be a non-negative integer. In this case, the involutive basis computation is stopped
after t seconds. If the program was not able to construct the result beforet seconds, then awarning is printed (cf. Example 3).

The right hand side of an equation "Name"=sis expected to be a string. | nvolutiveBasisFast appendssto the default name for the
temporary file to which the input for the external program JB is written.

The right hand side of an equation "denom"=b is expected to be either true or false. The default value isfalse. If b equalstrue, then the
C++ program collects all coefficients by which it divides during the computation of the involutive basis (these arise either as contents
of polynomialstreated by the algorithm or as leading coefficients in the result before normalizing) together with the coefficients that
occur in some denominator of the input L. After the computation is finished and the result is read into Maple, thislist of denominators
can be obtained viaPol ZeroSets. See also Example 4 below.

The right hand side of an equation "donotread"=b is expected to be a boolean value. If b equals true, then I nvolutiveBasisFast does not
read the result produced by the C++ program and does not return aresult.

Using the option "C++" of InvolutiveOptions, the command I nvolutiveBasisis replaced by | nvolutiveBasisFast (i.e. the former
becomes a synonym for the latter) for the current Maple session (which has the corresponding effect on all Maple procedures that call
InvolutiveBasis).

B Examples:

C>wth(lnvolutive):

( Example 1:



var =[xy, z]
D= [ x+y+z, x*y+y*z+zr¥x, x*y*z-1];
L= [x+y+zXxy+yz+zxxyz—1]
> |B := Invol utiveBasi sFast (L, var);
L IB:=[x+y+zy +yz+22, 22— 1,yZ° -]
> AssertlnvBasis(IB, var);
L [X+y+z VP +yz+22 22— 1,yZ° -]
Pol TabVar () ;

L
[>var =[x, Y,2];
[>L

1
\Y

[X+y+2z[xy 2, X
Y’ +yz+2,[*,v,2,y’]
[Z2-1,[* % 2,2%

L lyZ -y [*,* 2 yZ’]
Fact or Modul eBasi s(var) ;

L [Lzy 7 yzyZ]

1
\%

r > Pol Hi | bert Seri es(l anbda);
L 1+2A+20% +A3
Example 2:
[> var 1= [X,Y,z];
var =[xy, 7]
[ > L o= [x+2%¥y+43*%z, x*y+2*y*z+3*z*x, x*y*z-1];
L :=[x+2y+3zXxy+2yz+3zx xyz-1]

> | nvol utiveBasi sFast (L, var, "char"=7);
L [x+2y+3zy?+ 22 yZ2+47° +52* + 3y+27]

Example 3:

r>var :=[seq(a[i], i=1..12)];

L var = [y, &, 8, 8, 8, &, &, 8, 8, &y, &, A,

r>L :=[seq(a[i]"5-a[i+1]"4, i=1..nops(var)-1),seq(a[i]”3-a[i-1]"2, i=2..nops(var))];
L 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 3 2
Li=[a -8 .8, -8 ,8 -8 ,8 ~8 .8 &8 ~& & ~8 .8 ~8,8 ~& & ~a&; .4 ~&,,% ~&,

3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2

L 8 ~& & "8 ,8 8,8 & & "8 .8 ~& % ~& 8 ~&.a; ~d,a, ~a, ]

> | nvol utiveBasi sFast (L, var, "tinme"=1):

War ni ng, conputation of involutive basis stopped due to tine restriction.

> | nvol uti veBasi sFast (L, var):
Warning, resulting involutive basis is big; reading it may take a while...

[ > nops( Fact or Modul eBasi s(var, "L"));
8199

Example 4:

>var = [X,y];

var =[x y]
> L = [3*x*y-5, x-5%Y];

1 T

L :=[3xy—5x-5Y]
> | nvol utiveBasi sFast (L, var, "denonf=true);

| -

[ > Pol Zer oSets();

(53]
> Invol utiveBasi sFast (L, var, "N', "denoni=true);
L [x=5y,3y*-1]

[ > Pol ZeroSets();



L L [5]
See Also:
i . . ) . . . , is Pol



I nvolutive[l nvolutiveBasiSGINV] - python/C++ version of InvolutiveBasis

Calling Sequence:
InvolutiveBasisGINV (L ,var,ord,mode,opt)

Parameters:

L
var
ord

- list (or matrix) of generators of the submodule
- list of variables (of the polynomial ring)
- (optional) change of monomial ordering

mode - (optional) string specifying options for the computation

opt

- (optional) sequence of equations specifying options for the computation

Bl Description:

.

.

I nvolutiveBasisGI NV invokes the version of the command LnvolutiveBasiswhich uses the C++ module ginv for Python to perform
the involutive basis computation.

The parametersL, var , or d, and node have the same meaning asin lnvolutiveBasis

The advantage of this command is clearly the enormous speed up. (Note, you cannot interrupt this command from within Maple; you
have to kill the corresponding process "python" instead.)

The output of python is read into the current Maple session. To continue with commands that expect a previous run of lnvolutiveBasis
(likePalTabVar, FactorModuleBasis, PolHilbertSeries etc.) the internal data structure for the involutive basis has to be set up by the
command AssertinvBasis (cf. example below).

Possible left hand sides of the optional equationsopt are the strings “char”, "algext", "transext", "time", "Name", "quiet", "denom",
"donotread".

If an equation "char"=cis provided in opt by the user, thencis expected to be zero or a prime number. In this case, the involutive
basisis computed in characteristic ¢ (cf. Example 2). The purpose of this option isto compute just oneinvolutive basisin
characteristic ¢ If further commands like PolMinPoly shall be applied afterwards, the characteristic of the ground field must be
changed by using the command InvolutiveOptions

Theright hand side of an equation "algext"=pinopt isexpected to be aunivariate polynomial in an indeterminate { which does not
occur invar . The coefficients of p must be algebraic over the ground field in the sense that they are rational expressions in RoatOf
and indeterminates & used in previously given right hand sides of other equations "algext"=qinopt . This extends the ground field
(defined so far) by ¢ which has minimal polynomial p, i.e. every occurrence of Z inL is subject to the relation p= 0 (cf. Example 3).

The right hand side of an equation "transext"=zinopt is expected to be a name for an indeterminate. This extends the ground field
(defined so far) by a new transcendental element z

If "time"=tisgiveninopt , thentis expected to be a non-negative integer. In this case, the involutive basis computation is stopped
after t seconds. If the program was not able to construct the result beforet seconds, then awarning is printed (cf. Example 4).

The right hand side of an equation "Name"=sis expected to be a string. | nvolutiveBasisGI NV appendssto the default name for the
temporary file to which the input for ginv is written.

Asright hand side of an equation "quiet"=bin opt , a boolean value bis expected. The default valueisfalse. If b equals true, then no
intermediate output is produced on the screen by the Python/C++ program.

The right hand side of an equation "denom"=b is expected to be either true or false. The default value isfalse. If b equalstrue, then the
Python/C++ program collects all coefficients by which it divides during the computation of the involutive basis (these arise either as
contents of polynomials treated by the algorithm or as |eading coefficients in the result before normalizing) together with the
coefficients that occur in some denominator of the input L. After the computation is finished and the result is read into Maple, thislist
of denominators can be obtained viaPalZeroSets. See aso Example 5 below.

The right hand side of an equation "donotread"=b is expected to be a boolean value. If b equals true, then I nvolutiveBasisGINV does



not read the result produced by the Python/C++ program and does not return aresult.

¢ Using the option "GINV" of LnvolutiveOptions the command I nvolutiveBasisis replaced by I nvolutiveBasisGINV for the current
Maple session (which has the corresponding effect on al Maple procedures that call I nvolutiveBasis).

¢ For more information about ginv, cf. http://invo.jinr.ru and http://wwwhb.math.rwth-aachen.de/Janet.

Bl Examples:
C>wth(lnvolutive):
{ Example 1:
[> var = [X,Y,z];
var =[xy, 7]
[ > L o= [x+y+z, x*y+y*z+z*x, x*y*z-1];
L :=[x+y+zXxy+yz+zxxyz—1]

> |B := InvolutiveBasi s@ NV(L, var);
L IB:=[x+y+zy +yz+22, 22— 1,yZ° -]
> AssertlnvBasis(IB, var);

L [X+y+z Yy +yz+72, 22 - 1,yZ -]
Pol TabVar () ;

1
\Y

[X+y+2z[xy 2, X
Y +yz+2°,[* Y, 2, y]
[Z2-1,[* % 2,2%

L lyZ -y [*.* 2 yZ’]
Fact or Modul eBasi s(var) ;

L [Lzy 7 yzyZ]

1
v

r > Pol Hi | bert Series(l anbda);
L 1+2A+20% +A3
Example 2:
>var =[xy, z];
var =[xy, 7]
> L o= [ x+2%¥y+43*%z, x*y+2*y*z+3*z*x, x*y*z-1];

L :=[x+2y+3zxy+2yz+3zxxyz-1]
> | nvol utiveBasi sG@ NV(L, var, "char"=7);
[x+2y+3z P+ 2, yZ? + 47 +5 7'+ 3y+27]

1 T

Example 3:
>var = [X,v];
var :=[x ]
> al i as(onega=Root Of (Z*2+Z+1));
W
> sinplify(onega”3);
1
> factor(zeta”3+onmega*zeta+l, omega);
L C+wi+l
r > mnpolyl : = zet a®3+onega*zet a+1;

L minpolyl:= 3+ wl+1
r>L := [x"2-y"2, y"3-zeta*x"3];
L L= -y y =X

I nvol uti veBasi sA@ NV(L, var, "algext"=nmi npolyl);

L [Xz_y2!Xy2+(<2+(*))y3!y4]
r>J := InvolutiveBasi sG NV(AddRhs(L), var, "algext"=ni npolyl);

1
\Y




J::E@—y%[1,0],xy2+(z2+w)y3=[—xzz+w],y4 e
e i i R e
o % E0 o O 0 MO

*>S|erI|fy(ren(expand(rhs(J[S])[1] * L 2] * L[2]), minpolyl, zeta));

Example 4:

>var := [seq(a[i], i=1..10)];
L var = [y, &, &, 8, &, 3 &, 3 8y al
r>L :=[seq(a[i]"5-a[i+1]74, i=1..9),seq(a[i]"3-a[i-1]"2, i=2..10)];
- 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 3 2 3 2 3 2
Li=la, - ,8 -8 ,8 ~& .8 ~8&,8& ~8& 8 ~& & ~&,8 ~&,8& ~&.,& ~& ,& & & &,
3 2 3 2 3 2 3 2 3 2 3 2
L 8 ~8 .8 ~8 & ~& & —8& 8 ~& 8 & ]
r>J := InvolutiveBasi s@NV(L, var, "tine"=1):
War ni ng, conputation of involutive basis stopped due to tinme restriction.

> J := InvolutiveBasi s@ NV(L, var):
> AssertlnvBasis(J, var):
> nops( Fact or Modul eBasi s(var));

2055

Example5:

>var = [x,y];
var :=[x ]
> L = [a*x*y-a, Xx-b*y];
L :=[axy—a x—hy]
> | nvol utiveBasi sG@ NV(L, var, "denoni=true);

-

[a D]
> | nvol utiveBasi s@ NV(L, var, "N', "denoni=true);

[x- by by* - 1]

[a]

> Pol Zer oSet s();

m rmr

[ > Pol Zer oSets();

B See Also:
InvolutiveBasis AssertinvBasis InvolutiveBasi sFast, GroebnerBasisGINV, InvolutiveOptions Pol TabV ar, FactorModuleBasis,
| PollnvReduce PolinvReduceGINV, Syzygies SyzygyModulg PolHilbertSeries

o,



I nvolutive[l nvolutiveOptions] - set up the options for the current session of Involutive

Calling Sequence:
InvolutiveOptions(s,v)

Parameters:

s - string specifying the option to be affected
v - (optional) the option’s new value

B Description:

« InvolutiveOptions sets up the options for the current session of Lnvolutive The string s specifies the option which isto be modified or
whose value is to be returned. Possible values for s are the following:

"char" "rational" " Absol ut el ySnal | est Renmai nder "
" CH+" "G NV "Mapl e"

"matri x" "Janet Li ke" "criteria"

"l nvBasi s" "I nvReduce" " SyzygyModul e"

" GBasi s"

If the first parameter s is one of the strings "C++", "GINV", or "Maple", then | nvolutiveOptions has no return value. For all other
possible values of the first parameter s, | nvolutiveOptionsreturns the current value of the option specified by s. In these latter cases, if
no second parameter v is provided, the value of the option addressed by s is not changed.

« If s equalsthe string "char", then a second parameter v is expected to be zero or a prime number. Subsequent computations of the
I nvolutive package are done in characteristic v then. The return value of I nvolutiveOptionsis the characteristic of the ground field
used by the Involutive package so far.

« If s equalsthe string "rational”, thenv is expected to be either true or false. The default setting is true, which means that involutive
bases are computed over (an extension field of) the rational numbers or fields of non-zero characteristic, if the option "char" was
modified. If the option "rational” is set to false, then involutive bases are computed over the integers. Note that in this case the value
of the option "char" is automatically set to zero and that "rational” is set to true again if anon-zero valueis assigned to the option
"char" afterwards. The return value of | nvolutiveOptionsin this case is the former value of the option "rational”.

If s equalsthe string "AbsolutelySmallestRemainder”, then v is expected to be either true or false. This option isrelevant only if the
option "rational" has been set to false, i.e. if involutive bases are computed over the integers. In that case the option
"AbsolutelySmallestRemainder" determines how ambiguity of normal formsis resolved: If v equals false (which is the default), then €
term which is reduced modulo another polynomial with positive leading coefficient ¢, will have a coefficient between 0 and ¢-1. If v
equals true, then the resulting coefficient will be between floor(-02)+1 and floor(@2), i.e. it will be an absolutely smallest remainder
moduloc The return value of I nvolutiveOptionsin this case is the former value of the option "AbsolutelySmallestRemainder”.

« The keywords"C++", "GINV", and "Maple" select the method for subsequent computations of involutive bases, involutive
reductions, syzygy modules and Groebner bases. The default setting is"Maple". In this case al computations are done using
procedures written in Maple. If "C++" methods are chosen, then the command LnvolutiveBasis becomes a synonym for
InvaolutiveBasi sFast, PollnvReducea synonym for PallnvReduceFast, SyzygyModulea synonym for SyzygyModuleFast, and
GroehnerBasisa synonym for GroebnerBasisFadt, i.e. all these basic commands invoke the external C++ routines. Note that in this
casel nvolutiveBasisand SyzygyModule call AssertlnvBasiswith the output of the C++ routine as parameter which sets up the internal
data for the current I nvolutive session. Hence, from the user’s point of view, there is no difference in using the "Maple" or the "C++"
methods of | nvolutiveBasis, Poll nvReduce, SyzygyModule, and GroebnerBasiswhen selecting the methods by means of
I nvolutiveOptions The same remarks hold for the keyword "GINV". In that case InvolutiveBasis becomes a synonym for
InvalutiveBasisGINV, PallnvReducea synonym for PollnvReduceGINYV, SyzygyModulea synonym for SyzygyModuleGINV, and
GroebnerBasisa synonym for GroebnerBasisGINV. Note also that these options affect many commands of the Involutive package
which call these basic procedures (e. g. PolResolution) and that the "C++" and "GINV" methods are much faster than the "Maple"
routines for big problems. There is no return value of I nvolutiveOptionsif s is either "C++", "GINV", or "Maple".




C

|

|
|
|
|
|
|
|

[
|

If the parameter s isthe string "matrix”, thenv is expected to be either the symbol *matrix’ or the symbol *Matrix’. This option
determines the type for matrices returned by the procedures of thelnvalutive package (e.g. PolResolution, PolRepres Represare
affected by this option; however, the result of PolL eftinverse, PolRightlnverse and Pol Coeff is of the same type as their input). This
option is meaningful only for Maple versions that provide both the linalg and the LinearAlgebra package. The default value for this
option isthe symbol 'Matrix’.

If s equalsthe string "JanetLike", then v is expected to be either true or false. If v istrue then the command LnvolutiveBasisreturns a

Janet-like Groebner basisinstead of an involutive basis. The default setting is false. The return value of I nvolutiveOptionsisthe
former value of the option "JanetLike".

If s equalsthe string "criteria’, thenv is expected to be alist consisting of some of the integers 1, 2, 3, 4 (or being the empty list). If
theinteger i is present in v, then involutive basis computations during the current session of Lnvolutivewill apply the i-th involutive
criterion to avoid unnecessary reductions. For more details about the involutive criteria, see V. P. Gerdt, D. A. Yanovich,
"Experimental Analysisof Involutive Criterid’, in: A. Dolzmann, A. Seidl, T. Sturm (eds.), Algorithmic Algebraand Logic, BOD
Norderstedt, pp. 105-109.

By means of the keywords "InvBasis’, "InvReduce", "SyzygyModule", and "GBasis" the methods for subsequent computations of
involutive bases, involutive reductions, syzygy modules, and Groebner bases are chosen. This is a more advanced way of setting the
options described above for "C++", "GINV", and "Maple". More precisely, if s isthe string "InvBasis' thenv is expected to be a
procedure. Then every subsequent call of InvolutiveBasisinvokesv instead of the default method for involutive basis computation.
Similarly, if s is"InvReduce" (resp. "SyzygyModule" resp. "GBasis") then v is also expected to be of type procedure and every call of
PoallnvReduce (resp. SyzygyModuleresp. GroebnerBasis) invokesv instead of the default method. In each case the return val ue of

I nvolutiveOptionsis the procedure used so far by thelnvolutive package for the respective purpose.

Bl Examples:

> with(lnvolutive):
Example 1: Changing the characteristic of the ground field

> L o= [x-2%y, z-y];

L:=[x-2y,z-Y]
> | nvol utiveBasis(L, [x,Y,2]);
[(z+y, x-27]
> | nvol utiveOptions("char", 2);
0
> | nvol utiveBasis(L, [X,y,2]);
[z+y,X]
> | nvol utiveOptions("char", 0);
2
> | nvol utiveBasis(L, [x,y,2]);
[z+Yy,x=-2Z]
> | nvol utiveOptions("char");
0

Example 2: Computing involutive bases over the integers

> L = [3*Xx, x"2-X];

L:=[3xx*—-x]
> | nvol utiveOptions("rational", false);
true
> | nvol utiveBasi s(L, [x]);
[3% X +2X]
> Pol TabVar () ;
[3x[*].34

[ +2x [, X]
> | nvol uti veOpti ons(" Absol ut el ySnal | est Renai nder", true);
false
> | nvol utiveBasis(L, [x]);



[3%X°—X]

> Pol TabVar () ;

[3%[*],3%]
D¢ =% [x,X]

> I nvol utiveOptions("rational", true);

false

> | nvol utiveBasis(L, [x]);

[X]
Example 3: Selecting fast involutive basis computation method
>L :=[seq(a[i]"3-a[i+1]-1, i=1..6),seq(a[i]"2-a[i-1]+1, i=2..3)];
Li=[a -a-Lla -a-1a -3-18 ~a-18 ~8-18 -8 -18 -a+1a ~a+1]

I nvol uti veOptions("C++");
I nvol utiveBasis(L, [seq(a[i], i=1..7)]);

vV Vv

[1]
> | nvol utiveOptions("G NV');

> | nvol uti veBasi s(L, [seq(a[l] i=1..7)1);

[1]
> | nvol utiveOptions("Mple");

> | nvol utiveBasi s(L, [seq(a[l] i=1..7)1);

[1]

>var = [x,v];

=[xy
> L o= [x+y, x*yl;

L = [x+y,xy]
> Pol Resol ution(L, var);

bl

array

> whattype(%1]);
> | nvol utiveOptions("matrix", Mtrix);

matrix
> Pol Resol ution(L, var);

Ty

Matrix

> whattype(%1]);

> I nvol utiveOptions("matrix", matrix);

L
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Matrix
Example 5: Computing Janet-like Groebner bases

[ (see V. P. Gerdt, Y. A. Blinkov, Janet-like Groebner Bases Proceedings of Computer Algebrain Scientific Computing, Springer,

2005 pp. 184-195)

r D= [ XNT-yN2%z, XMNAFWyN3, xN3ry-zrw]

L L:=[X -y zx'w-y* xCy—zw]

[ > I nvol utiveOpti ons("Janet Li ke", true);
false

> Invol utiveBasis(L, [X,y,z,W);

L [zw?x+y* xCy—zw, xX*w -y yx* — zwx X' - y? 7]

[ > | nvol utiveOpti ons("Janet Li ke", false);

true



> I nvol utiveBasis(L, [Xx,y,z,W);
[ZwW?x+y* 3 y—zw, X w— y3, zw? 5 +y X yxt — zwx Wi — yEx 2w 3 + Y, v — zw o, wxl — il vl — zwxd,

X' -y*7]
[ > GroebnerBasis(L, [x,y,z,W);
[zwW?x+y* xCy-zw, X w-y3 X - y* 7]

Bl See Also:
. . - - \ H q y Y
I lovoluiveRass | is Sats lovojutiveiasshad, mmue&aw Mmaedlml Mmaedmﬂl ; BollnvReduceGINY, , BolTavar




I nvolutive[l nvolutivePr eprocess| - find possibilitiesto solve relations of a finitely presented module over a

polynomial ring for some variables

Calling Sequence:
InvolutivePreprocess(L ,var,mode)

Parameters:
L - matrix of polynomiasinvar or list of (lists of the same length of) polynomiasinvar
var - list of variables (of the polynomial ring)

mode - (optional) string specifying options for the computation

B Description:

« I nvolutivePreprocesssearches through the list L in order to find (tuples of) polynomialsin L which can be solved (linearly) for some
of thevariablesinvar . If possible, it returns alist of equationsthat are solved for some variable in terms of the other ones. It is
convenient to apply I nvolutivePreprocessto L prior to the run of InvolutiveBasisand to possibly use the result of
I nvolutivePreprocessto eliminate some of the variablesinvar by substitution in order to reduce the complexity of the involutive
basis computation. This is automatized by the command Substitute.

 For each generator p of the submodulein L, I nvolutivePreprocesschecks whether avariableinvar occurs only linearly in (some

component of) pwith coefficient independent of the other variables. If thisisthe case, p= 0is solved for this variable, the resulting
equation becomes an entry of the list returned by | nvolutivePreprocess and the next generator is examined.

* Theentries of L are polynomialsin case of anided, i. e. a submodule of the free module of rank one, or lists of polynomials of length
m, representing elements of the free module of m-tuples over the polynomial ring. If L is a matrix, then the generators are extracted
from the rows of L.

* The parameter var isalist specifying the variables of the polynomial ring.

« If theletter "A" is present in npbde, I nvolutivePreprocessfindsall possibilities to solve (tuples of) polynomiasinL for variablesin
var , i.e. the search process described above is not stopped when finding a relation for some variable (in some component), but the
search is extended to all variables (and all components).

« If theletter "S" is present in mode, the program applies evalaand simplify to the result of solve If the polynomiasin the input L
contain nonrational coefficients, more precisely, if the ground field contains algebraic elements over the rationals (RootOf), then evala
and simplify are applied to the result of solveautomatically by I nvolutivePreprocess

» Theresult of InvolutivePreprocessis a (possibly empty) list of equations whose |eft hand sides are variablesinvar intheidea case
or tuples whose only non-zero entry isavariable invar . These equations satisfy that the difference of their left and right hand sides
are in the submodule spanned by L.

« Inaddition, for each variableinvar which does not occur in the generators of the submodule given inL, I nvolutivePreprocessgives a
warning.

Bl Examples:
C>wth(lnvolutive):

Example 1:

[>var =[x, Y, 2];
var =[xy, 7]
> L o= [x*y, 3*x-ynr2-z, yr2-z72];

L L:=[xy,3x-y* -z y* - Z°]
r > Invol utivePreprocess(L, var);

| ity 4




r > Invol utivePreprocess(L, var, "A");

1 1 %
=" + = = -
% Y +322=3xy
> | nvol uti vePreprocess(L, [Xx,Y, z,

Warni ng, variable u does not occur in gi ven polynom al s.
:' +~7
L 3 3

Example 2:

[> var = [Xx,Y,z];
=[xy 2]

r>L :=[[0,x"3,x-2,y"2-2z"2-X],[0, 0, x"2-y+z"7*x+1, 1], [ x*2, y"3, x+x*y, 0] ] ;

| L:=[[0 x-2zY?-72* =], [0,0,° = y+Z' x+1, 1], )%, y°, X+ xy, 0]]

r > Invol utivePreprocess(L, var);

L [[0,0,% 0] = mﬁzf 722 -%,[0,0,y,0]=[0,0,%+ z' x+1,1]]

r > Invol utivePreprocess(L, var, "A");

L [[0,0,x0]1=[0,x%zy?-7*-x],[0,0,20]=[0,)C,x y* -z =¥, [0,0,0,X] = [0,5, x— z y* - 2], [0, 0, ¥, 0] = [0, 0, % + " x+ 1, 1]]

Example 3:
[> var = [X,Y,2];
. . =[xy
[ > | nvol utiveOptions("char", 2);
0

> L = [x*y, 3*x-yr2*zh2, yr2-272],
L L:=[xy,3x-y? A y* - 7°]
r > Invol utivePreprocess(L, var);
L [x=y*7°]
[ > | nvol utiveOptions("char", 3);
2
r>L = [x*y, 3*x-y"r2*z~r2, yn2-z72];
L L:=[xy,3x-y? 24 y* - 7%]
[ > | nvol utivePreprocess(L, var);

L []

See Also:
i . itte, ) . Tabvar, Po il . ul .




I nvolutive[ltJanet] - perform iterated Janet division on a polynomial

Calling Sequence:
I1tJanet(p,J,var,c)

Parameters:

P
J

var

polynomial

Janet basis with right hand sides

list of variables (of the polynomial ring)

list of equations containing Janet normal forms modulo J

B Description:

.

C

T T

ItJanet performsiterated Janet division on the polynomial p. This method can be used when algebraically independent polynomialsp,,
.., p inthe variablesvar are given such that the factor module of the polynomial ring in the indeterminatesvar modulo the ideal
generated by p,, ..., p, is afree module over the polynomial ring P generated by thep,, ..., p.. Another requirement for the applicability
of ItJanet isthat a Janet basisJ of the ideal generated by p,, ..., p, is computed with right hand sidesP,, ..., P, forp,, ..., p, resp., where
the P, are unassigned variables. In order to guarantee convergence of I tJanet, the right hand sides of this Janet basisJ must have
smaller degreein the variablesvar than the corresponding left hand sides. Then by means of |tJanet one can express any given
element p of Pas polynomia inP,, ..., P.

r

Moreover, as fourth parameter ¢ alist of equationsis accepted that contains the Janet normal forms with right hand sides modulo J of
abasis of the polynomial ring Rin the variablesvar as module over P. If this basis consists of the polynomiasag, ..., d, thelist ¢ can
be constructed by applying PollnvReduceto g=Q fori=1, ..., s, whereQ,, ..., Q, are unassigned variables. Then I tJanet expresses any
element p of Raslinear combination of theQ with coefficients that are polynomialsin theP.

ItJanet appliesPallnvReduceto p=0 (modul o the Janet basisJ) and reduces the result modul o the vector space generated by the left
hand sides of ¢ by Gaussian elimination and taking the corresponding linear combinations on the right hand side. In thisway the
unassigned variablesP, Q are gathered on the right hand side. L et the result ber=g. Then ItJanet applies this step of the algorithm
againtor — g. This processisiterated until the degree of r — qin the variablesvar is zero.

Bl Examples:

> w th(lnvolutive):

Example 1:

>var = [x,y]:

> pl = xN2+y"2; p2 = x+y"3;
pl =2 +y?
p2 = x+y°

J = InvolutiveBasis([pl=Pl, p2=P2], var):

vV Vv

Pol TabVar () ;
[ +y*=PLIx ] ¥]
[x+y*=P2[*,y],y*]
[y’ x-y?=P2x-PL[*,y], X

\%

I'tJanet (pl*p2~2, J, var);
P1P2?

\%

It Janet (p173+p2, J, var);
P2+ P13

Example 2: Invariant ring of C3 x C3

> w th(lnvariant):
>var 1= [wX,Y,z]:



r>tl = [wW=w, X=X, y=-y-2z,z=y]; t2 := [w=-w X, X=w, y=y, z=2] ;
tl:=[w=w,Xx=Xy=-y-272z=Y]
L 2:=[w=-w-XxX=w,y=y,z=7]

C>r := a->Reynolds(a, [t1,t2], 9, 10):
r>pl = yr2+4y*z+z"2; p2 = W'2+W X+X"2;
p3 = -y"2¥z-y*z"2; p4d 1= -Wr2¥X- W X"2,;

pl:=y +yz+7°
P2 1= W2 + wx+x°
p3:= vy z-yZ

L p4 = w2 x— w2

C>J :=InvolutiveBasis([pl=Pl, p2=P2, p3=P3, p4=P4], var):

r>S:= Seclnvar(r, 9, J, var, Q;

S:i=[[1,3yZ -y} + 22, 3wx’ - w3+, 3yZZ X - 322 yw? -3y P w - ¥ ¢ —w3 2 +x3 22 +3Z28 %% w +y w? 4972 yxCw] |
1=QL 3yz>=-P1z+Ply+Q2 3wx* = -P2x+P2w + Q3

L 922 yxPw=-P228x+ P28 w -3P2xZ%y +3P2Z2 yw —3P1zx2 w +3P1x2 wy +P2xy® —-P2y?w +Qd4]]
r>92 :=9[1,2]; g3 :=91,3]; g4 := 91,4];

2:=3yZ -y} +7°
g3 :=3wxe-wi+x°
g4 :=3yZ2xC-3Z22ywi -3y 2w -y’ ¢ -wiZ 3 2 +328 % w +Pw? +9Z22yxPw

c>c o= S[2]:
[> It Janet (pl*p2, J, var, c¢);
P1P2
[ > |t Janet (p3*q3+pl”2*g4, J, var, c);
P12 Q4+ P3Q3

[> It Janet (372, J, var, c);

-9P4* -3P4Q3+P2?

See Also:



I nvolutive]JanetGraphy] - return the Janet graph which correspondsto the Janet basis

Calling Sequence:
JanetGraph(B,var)

Parameters:

B - (optional) Janet basis
var - listof variables (of the polynomial ring)

B Description:

» Associated with every Janet basisis a Janet graph which is the labeled directed graph whose vertices are the elements of the Janet
basis and whose edge set is given as follows: For each element vof the Janet basis and each of its non-multiplicative variables xthere

is an edge fromvto the unique involutive divisor of xvin the Janet basis. This edgeis|abeled by x The Janet graph contains the same
information as the corresponding Janet basis (cf. Pol TahVar).

* The command JanetGraph returns the Janet graph which corresponds to the Janet basisB. If B is not given, JanetGraph works on the
Janet basis which has been computed by the last call of InvalutiveBasis The graph is returned as the list of its labeled edges, where
each edge isrepresented as atriple[v, x w], wherevis an element of the Janet basis, xis a non-multiplicative variable of v, andw is the
involutive divisor of xvin the Janet basis. The order of the edges in the result is the same as the order of theV sin the Janet basis.

« For more information about the Janet graph, see W. Plesken, D. Robertz, "Janet’ s approach to presentations and resol utions for
polynomials and linear pdes’, Archiv der Mathematik, 84(1), 2005, 22-37.

B Examples:

C>wth(lnvolutive):

[ > var = [x3,x2,x1];
var = [x3, X2, x1]

r>L := [x2"2*x3, x172*x3"3];

L L := [x22x3, x1% x3%]

r>J := InvolutiveBasis(L, var);

L J:= [x22 X3, x32 x22, x12 x3°3, x3° x22, x2x1% x3°]

r > Pol TabVar () ;

[x22 X3, [*, X2, x1], x22 x3]
[x3%x22, [*, x2, x1], x3% x2°]
[x1% X33, [x3, *, x1], x1% x3°]
[x3%x22, [x3, x2, x1], x3* x2?]

L [x2x1%x3% [x3,*, x1], x2x1% x3°]
r > Janet G aph(var);

L L [[x2% X3, X3, x3% x2°], [x3% x22, x3, x3% x2?], [x1% X33, x2, x2 x1% x3°], [x2 x1% X33, x2, x3% x2?]]

See Also:




I nvolutive[L eadingM onomial] - determine leading monomial(s) of a (list of) polynomial(s)

Calling Sequence:
LeadingMonomial (L ,var,ord,mode)

Parameters:

L - list of elements of afree module over apolynomial ring

var - list of variables (of the polynomial ring)

ord -  (optional) change of monomial ordering

mode -  (optional) string specifying the type of information to be returned
B Description:

» LeadingMonomial returns the leading monomial of L with respect to a certain monomial ordering, if L isapolynomial. If L isalist of
polynomials, LeadingMonomial returns the list of the respective leading monomials. The default monomial ordering is the degree
reverse lexicographical ordering ("term over position” in the case of tuples). The monomial ordering is determined by the optional
parameter or d.

 For adescription of all possible values of the parametersvar and or d see the corresponding explanations inlnvolutiveBasis

* Asoptional fourth parameter node a string consisting of letters"C" and "T" is accepted. If mode contains the letter "C", the leading
monomials are returned with leading coefficients (i. e. leading terms). If mode contains "T", tuples of the same length asthe tuplesin
L arereturned (length 1 if L consists of polynomials), where the leading monomial is in the same component where it occursin the
corresponding element of L and the other components are zero.

Bl Examples:

C>wth(lnvolutive):

[> var = [X,Y,z];

=[xy

[ D= [3Fx*y*z+4*x*z"3, 2*¥yN2+T7*X];
L :=[3xyz+4xZ:, 2y? +7X]

[ > Leadi nghbnomi al (L, var);

[x2*, y]
[ > Leadi ngMonom al (L[ 1], var);

xz3
[ > Leadi ngMonom al (L, var, 1);
[xyz X

[ > Leadi ngonomi al (L, var, 1, "C");

[B3xyz 7X
[ Examplesfor elements of the free module of rank 2:

> L = [[x*y*z+x*z"3, y"2], [x"3,vy]];
. . L :=[[xyz+x2’, y1, <, V]
> Leadi ngMonom al (L, var);
[xZ%, %]
[ Assign degreesto the variables:
> Leadi ngMonomi al (L, [x=1,y=3,z=1]);
Y2 <]
[ Use "position over term" ordering:
> Leadi nghbnomi al (L, [x=1,y=3,z=1], 2);
[xyz xX°]
[ Change the sequence of priority of the list entries:
> Leadi nghonomi al (L, [x=1,y=3,2z=1,2,1]);
Y2, <]

[ Return leading monomialsin tuples:
( > Leadi nghbnomi al (L, [x=1,y=3,z=1,2,1], 4, "T");




L [[0.y’]. [, 01]

[ Assign degreesto standard basis vectors:
[ > Leadi ngMononi al ([[x*y, y]l., [X,y,1=0, 2=2], 4);

v

See Also:



I nvolutive[Noether Nor malization] - find invertible transformation of the variables which puts given ideal in

Noether position

Calling Sequence:
NoetherNormalization(L ,var,mode,opt)

Parameters:
L - list of polynomials
var - list of variables of the polynomial ring
node - (optional) sequence of strings"L" or "P"
opt - (optiona) sequence of optionsto be handed over to involutive basis computation

B Description:

* NoetherNormalization constructs a Noether normalization of the ideal generated by the elements of L in the polynomial ring with
indeterminatesvar . More precisely, an automorphism of the polynomial ring is determined such that the transformed residue class
ring is afinite extension of a polynomial ring generated by a certain number of new variables.

« NoetherNormalization returns (as part of its output) alist encoding such an automorphism. This list consists of equations which
represent a substitution of the variablesinvar . In each equation, the left hand sideisavariableinvar , and the right hand sideis
understood as a polynomial in new variables, which is the image of the variable on the |eft hand side under the automorphism.
However, to simplify further processing of the output, the new variables again get the names given invar . If disthe Krull dimension
of the given residue class ring, then the new variables whose names are the lastd entriesinvar form apolynomial ring over which the
transformed residue classring isfinite.

If the characteristic of the ground field is changed for the current Involutivesession using LnvolutiveOptions, then
NoetherNormalization computes over the same chosen ground field.

If the characteristic of the ground field is zero, then the images of the variablesin var under the constructed automorphism are linear
combinations of the new variables, i.e. the right hand sides defined above are linear polynomials. In particular, if the givenideal is
homogeneous, then itsimage under the constructed automorphism is again homogeneous. In non-zero characteristic, a
non-homogeneous transformation may be necessary.

» Theresult of NoetherNormalizationisalist of two lists. The second list defines the automorphism described above in terms of
equations, whose i-th right hand side is the image of thei-th variable invar . This coordinate transformation achieves a Noether
normalization of the residue class ring modulo the ideal generated by L. Thefirst list in the result is an involutive basis for the
transformed ideal (the result of InvolutiveBasis) with respect to the degree-reverse lexicographical ordering.

» Theimplemented method first computes an involutive basis of the given ideal and then compares the number of variables occurring in
the denominators of the generalized Hilbert series for the complement of the ideal of leading terms (see FactorModuleBasis) with the
Krull dimension of the residue classring. Aslong as the former number is greater than the latter number, a sparse invertible
transformation of the variables is determined from inspection of the leading terms of the involutive basis such that the difference of
the corresponding numbers for the involutive basis of the transformed ideal is smaller. This processisiterated, where the given ideal
isreplaced by the transformed ideal, until the difference is zero.

The string "L" is accepted as an option (see Example 5 below). If it is given in node, Noether Normalization ensures that the last d

variables are algebraically independent modulo the given ideal in the new coordinates, whered is the Krull dimension of the residue
classring.

If the string "P" isgiven innode (see Example 6 below), NoetherNormalization determines after the computation of the first
involutive basis whether the given ideal is principal. In that case it checks whether the unique element in the involutive basisisa
monic polynomial in some of the variablesinvar (starting from the first variable). If thisistrue, then NoetherNormalization

immediately returns the list consisting of the involutive basis, alist encoding the identity map of the polynomial ring, and avariable in
var asthird entry such that the above generator of the principal ideal is monic as a polynomial in that variable, and it is not monic as

apolynomia of lower degree in another variablein var . If thistest fails, then Noether Normalization goes on with the process
outlined above.




« For more information about this method to construct a Noether normalization, see D. Robertz, "Noether normalization guided by
monomial cone decompositions’, Journal of Symbolic Computation, 44(10), 2009, pp. 1359-1373.

B Examples:

C>wth(lnvolutive):
{ Example 1:
[> var = [Xx,Y,z];

var :=[x Y, Z]
[> L o= [x*y*z];

L :=[xyZ]
[ > | nvol utiveBasi s(L, var);
[xyZ]
r > Fact or Modul eBasi s(var);
1 X Xy
+ +

L (1-y)(1-2 1-x1-2 1A-x1-y)

r > N := NoetherNornmalization(L, var);

L N = [[x*—yx’ =2 +xyZ], [x=X y=y-x 2= 2= X]]
AssertlnvBasi s(N 1], var):
Fact or Mbdul eBasi s(var);

1
VvV Vv

1 X X2
+ +
i _ _ (1-y)(1-2) 1-y)a-2) 1-y)@a-2)
I nvol uti veBasi s(subs(N 2], L), var);
L [ -y - 2% +xy7]

1
\%

Example 2:

[> var :=[z,¥,X,W ;
var:=[zy,x w]

r>L = [x*y*z, x*z"2, Xx*y"2, w\2*x"2];

L L := [xyz Xz xy?, w2 ¥?]

C > InvolutiveBasis(L, var):

> Fact or Modul eBasi s(var) ;
2 2 2

z yz z zx X% 2w s y xy  yé yéw 1
+ + + + + + + + ¥ ¥ £
1l-2721-yy@d-w) (1-y(l-w) 1-w 1-w 1-x 1-x (1-y)(1l-w) 1-w 1-w 1-x 1-x 1-w
X X Xw
+ + +
L 1-w 1-x 1-x
r > N := NoetherNornualization(L, var);
L N:=[[y? z-xy% yZ2 - xyz, 22— x22, 2 W? = 2w2 xz+ W2 32, zw? X2 - w? &, yw? xz—- yw? X?], [z= Z y= ¥, x= X— z W= W]]
r > AssertlnvBasis(N 1], var);
L [yV? z— xy?, yZ2 — xyz, 22 - xZ%, 2 w? - 2w? xz+ w2 X%, zw? 2 — w2 3, yw? xz— yw? %]
> Fact or Mbdul eBasi s(var);
1 2 ZAw zy xyz zyxw  z zx ¢ 2w

+ + + + + + + + +
1l-y@l-x(21-w) 1-x 1-x 1-w 1-x 1-x 1-w 1-w 1-x 1-x

Example 3: (involutive basis computations can be switched from Maple to C++)

> | nvol utiveOptions("C++"):
>var 1= [wX,Y,z];
var = [w, Xy, 2]
> L o= [zXyn2-3FX*Wryn2, AXxry*z-TrzA2%w, yN2%z-2XwWrzry*xh2, wh3*x-xM3*y];
L:= [y’ z- 3xwy? 4xyz— 722w, Y’ z- 2w zyx>, w3 x— X V]
> | nvol utiveBasis(L, var):
> Fact or Mbdul eBasi s(var);

m Mo



1M [

1 T

r>N:

wx  Xw wixz wixy , Xy . , .
+ +w3Z22 +wyZ? twy +wy? z Tov y wlyz wxy wyz wiyz w?z wy? wiz

— T+ 22w+
1-z 1-X zw 1-x 1-X

X Xy wix wiY? owys 8y wiz owly w8y 1 y
+ + + + + + + + + + +
1-x1-2 1-y 1-x 1-y 1-y 1-x 1-w 1-w 1-y 1-x 1-z 1-z
4 2 2 2 2 4 4
w ZXw oyxXw wx z® w'yz w*y? , X w
+ + +W° +y® # + T F
1-w 1-x 1-Xx w? Y 'z 1-x +1—w +(1—W)(1—y) vz ¥z 1-z 1-z

+wly+ w22 +wly+

+ +y? +w? +

1-y
X2
+
1-z
> N : = Noet herNormalization(L, var):
>N 2];

[W=w,x=x-w,y=y-Xxz=2z-X]
> AssertlnvBasis(N 1], var):
> Fact or Modul eBasi s(var);

WX X 1 wy wy Xy wly w?x
2 2 2 2
1.t (1—y)(1—z)+(1—y)(1—z)+XWy2 +W2 Y 2 +W2xy +w2y? +3 ¢ HC By oy 1o, 1o, 1,

w w3y wix y'w WXy WwWyz w2 owe w w X2
Y ¢ ‘ 3z + Y, y5y +72¢ w8z ¥ Yz F y‘; Ky T,

+ + + + +
1-z 1-z 1-z 1-z 1-z 1- 1-z 1-z 1- 1-z
> | nvol utiveOptions("Mapl e");

Example 4: (Noether normalization over afinite ground field sometimes requires a nonlinear transformation)

> | nvol utiveOptions("char", 2);
0
>var = [X,y];
var :=[x Y]
> L 1= [x*y+y"2];
L=y +xy]

Noet her Nor mal i zati on(L, var);

N:=[[X 45 +xy+y?] [x=x y=y= ]|
AssertlnvBasis(N 1], var):
Fact or Modul eBasi s(var) ;

vV Vv

1 X X2 N
+ + +
1-y 1-y 1-y 1-y

\%

I nvol utiveOptions("char", 0);
2

Example5: (ensurethat last d variables are algebraically independent modulo the ideal, whered is the Krull dimension)

>var = [Xx,Y,z];

var =[xy, 7]
> Lo

[ x*yr2+42*x"2*y, z"3];
L:=[xy? +2x%y, 2%

> N : = Noet herNormalization(L, var);

N:=[[Z3 x® = xy?, xZ2, 2234, [X= X y= y— % 2= Z]]
> AssertlnvBasi s(N 1], var):
> Fact or Modul eBasi s(var) ;

X X X7 X zx  xz2 1 z 7
+ + + + + + + +
l1-y 1-y 1-y 1-y 1-y 1-y 1l-y 1-y 1-y
> N : = Noet herNornal i zation(L, var, "L");
N:=[[y’, = xZ ¥’ x ¥’ ], [x=x y= 2= % 2= Y]]
AssertlnvBasi s(N 1], var):
Fact or Modul eBasi s(var);

X Xy XY X xy xy¥ 1 y Vv

+ + + + + + + +
1-z 1-z 1-z 1-z 1-z 1-z 1-z 1-z 1-z

vV Vv




Example 6: (check for principal ideal)

[>var = [w Xy, z];
var :=[w, XV, z]
r>~L:

[wex*y*z + yA"3 + wx + z"2];
L= [zyxw+y® +wx +7°%]
r > N := NoetherNormalization(L, var);

N:=[[w?+w? —wiy-w?z-w3x +yw? x +w? xz -3yw? +w?yz —zyxw +2zw 3wy* -wx * 2],
L [W=w,x=x-w,y=y-w,z=z-w]]
C > AssertlnvBasis(N 1], var):

1
\%

Fact or Modul eBasi s(var) ,
1 w W2 W3
+ + +
L (1-0A-9E-2 1-91-N(1-2 @-0E-NE-2 1-9(1-Y(L-2)
r > Noet her Normal i zati on(L, var, "P");
[[zyxw+ Y3 +wx+Z2], [W=W, x= X y=Y, 2= 7], Z]

See Also:



Involutive[Hag],

I nvol utive[NotHas] - takes a certain sublist of alist of elements of a free module over a polynomial ring

Calling Sequence:

Has(B,var,vi,ord)
NotHas(B,var,vi,ord)

Parameters:
B - list of module elements, typically an involutive basis
var - listof variables (of the polynomial ring)
vi - list of variablesto be inspected
ord - (optional) change of monomial ordering
B Description:

* NotHasrespectively Has returns the list of polynomials of B of which the leading monomial does not contain the variablesinvi resp.
does contain variablesinvi .

* The elementsin B must be polynomialsin the variablesvar or lists (of the same length) of such polynomials.

e Typically Bisan involutive basis of polynomials, cf. InvolutiveBasis, computed with respect to pure lexicographical ordering, andvi
are thefirst variables according to this ordering. In this case, NotHasreturns the polynomials of B not containing any variables of vi .

« With an optional fourth parameter the monomial ordering which affects the selection of the leading term can be chosen. The default
ordering is degree reverse lexicographical (with "position over term" ordering in the module case). For a description of al possible
orderings and assignment of degrees to variables and basis vectors (by means of parameter var ) seelnvolutiveBasis

» To extract the sublist consisting of those elements of B that does not contain any of the variablesinvi at al one can use the Maple
function remove (resp. select) combined withhas(see examples below).

Bl Examples:
C>wth(lnvolutive):

Example 1:

[> var 1= [x,y, z];
var:=[xy,7]

r>L = [x*y+y*z+z*x, X"2-Xx*y];

L L = [xy+yz+zx X2 = xy]

r>B := InvolutiveBasis(L, var);

L B:=[xy+yz+zx X +zx+yz Y 2+ 22 x+y7’]

[ PolTabVar displaystheinvolutive basis, multiplicativity of variables and leading monomials:

r > Pol TabVar () ;

[xy+yz+zx[*, V2], xy]
DC+2zx+yz[x Y, 2, ¥]

L [y’ z+ 22 x+yZ, [*,y,2, Y 2]
r > NotHas(B, var, [x]);

[y 2+ 2 x+yZ’]
(Note, w. r. t. pure lex. ordering the summands containing x are the greatest, so we get:)
> Not Has(B, var, [x], 1);
[]
> Has(B, var, [x]);

[Xy+yz+zx X +zX+YyZ]

T

> Has(B, var, [x,Y]);



C

[Xy+yz+2zx X +zX+yz Y’ 2+ Z° x+y7°]
Example 2: Comparison to Maple functionsremove/ select / has

> L o= [y"2+x*y, yr2-272],
L= [+ xyf 7]

B:=[y? - 2% xy+ 2%, 2 x+ yZ°]
[y =2, [* % 2, Y]

[xy+ 2% [%Y,2], xy]
[ZZx+yZ2 [%*, 2), 22 ]

> B := |l nvol utiveBasis(L, var);

\%

Pol TabVar () ;

\

Not Has(B, var, [z]);
[y? - 22 xy+ 7]

[]

\%

renmove(has, B, [Zz]);

\%

Has(B, var, [z]);
[ x+yZ?]

\

sel ect(has, B, [z]);
Y2 - 22, xy+ 22, 22 x+ y7%]

Example 3: Typically the command NotHas comes in the context of elimination as follows:

>var = [x,y,a,b,cl;

var := [x y,a b, c]
> L 1= [xM2+y"2-a, xA2*y"2-b, xA3*y-x*y~r3-c];

L:=C+y?-a Xy -bxy-xy*—c]

> L := IlnvolutiveBasis(L, var, 1);

L::Enaz—4b2—cz,bazy—4b2y—czy,y2ba2—4y2bz—czyz,yzbaz—4y3b2—c2y3,b+y4—yza,cx+y3a—ya2+2by,
cax+y’a®-ya®+2bay, ca’x+y*a®-ya* +8b%y+2c’y,cy’a-ca’y+bxa® -4b*x+2cyb, cyx+ 2by* - ba,
cayx+2byza—4b2—cz,—4bxy+2cy2—ca+ya2xcy2x+2by3—bay,bxf—icy3+icay—ibxa—2bx+y2ax+cy,
xy3+§c—§yaxx2+y2—a%

> Not Has(L, var, [x,y], 1);

[ba?-4b%-c?]
This of courseisinterpreted as aring relation between x"2+y"2, x*2y"2, and x"3y-xy"3.

See Also:
i . ’ )



I nvol utive[PoI CartanChar acter] - compute Cartan characters of afinitely presented module over a polynomial ring

Calling Sequence:

Pol CartanCharacter(i)
Pol CartanCharacter()

Parameters:

" (empty string) or natural number smaller or equal to the number of indeterminates

B Description:

e Let Z q\/ be the Hilbert series as discussed in PolHilbertSeries Then the Cartan charactersa(q, i) are defined by
i=0

< v S (,>
S v av-15 avirvp e

where qisthe highest degree of the polynomials in the Janet basis computed by the last call of InvolutiveBasis (The same formula
holds with g replaced by the index of regularity plus 1, cf. PollndexRegularity, with suitably modified Cartan charactersa’s.)

« PolCartanCharacter() prints the the highest degreeq of the polynomialsin the Janet basis computed by the last call LnvolutiveBasis
and returns the list of Cartan characters[a(g, 1), ..., a(q, n)] of the factor module of the free module over the polynomial ring modulo
the submodule generated by this Janet basis. PolCartanCharacter (i ) returns the Cartan character a(q, i).

« All thisinformation can also be extracted from the command PalHilbertSeries

» PolCartanCharacter(" ") simply prints the Cartan charactersa(qg, 1), ..., a(g, n), whereqis as above.

Bl Examples:
C>wth(lnvolutive):
[> var 1= [X,Y,z,V];
=[xyzv
[ > L = [ x*y+y*z+z*x, x*y*z-v];
L :=[xy+yz+zx xyz-V]
r>B := InvolutiveBasis(L, var);

L B:=[xy+yz+zx v+tyzZ2 +Z2 X Y2 22 + vy + V7]
r > Pol CartanCharacter("");
al pha(4, 1) 15
al pha(4, 2)
al pha(4, 3)
L al pha(4,4)
r > Pol CartanChar act er()
Cartan Character for q =

L [15,6,0,0]
[ > Pol CartanCharacter(2);

6
0

6
r > Pol TabVar ();

[Xy+yz+2zx [% ¥,z V], xy]
[v+yZ +Z2% [x *, Z V], 2 X]

L [y 2 +vy+vz [*, %2\, Y’ 2]
r > Pol Hi | bert Series(s);

1 1
1+4s+95° +158° +s' H57——+6 >
l1-s "(1-9)
> Pol I ndexRegul arity();
1
In particular, the Hilbert series could be rewritten as 1 + 4*t + t"2* (6* 1/((1-t)"2) + 3* 1/(1-t)).
Note, the Cartan characters depend on the Hilbert series, which isthe same for all variable orderingsin case one works with the
degree reversed lexicographical ordering. However, if one works with the pure lexicographical ordering, one will usually get different

m r



| Hilbert series and hence different Cartan characters:

r>Bl := InvolutiveBasis(L, [v,X,y,2z], 1);

L Bl:= [xy+Yyz+zx v+yZ? + 72 X
r > Pol Hi | bert Series(s);

) 1 1
1+3s+s" B _+2 >
L 1-s (1-9)
r > Pol CartanChar act er()

Cartan Character for q =

L [32,0,0]

See Also:



I nvolutive[PolCheckHOM] - check whether a matrix represents a homomor phism between two finitely presented

modules over a polynomial ring

Calling Sequence:
PolCheckHom(M,A ,N,var)

Parameters:
M - list (of lists of the same length) of polynomials or matrix with polynomial entries
A - list (of lists of the same length) of polynomials or matrix with polynomial entries
N - list (of lists of the same length) of polynomials or matrix with polynomial entries
var - list of variables of the polynomial ring

B Description:

« By means of Pol CheckHom one can determine whether A represents a (well defined) homomorphism from the module presented by M
to the module presented by N (i.e., the elements of Mand N are considered as elements of afree module of tuples over the polynomial
ring with indeterminatesvar of appropriate rank, and the modules presented by Mresp. N are the factor modul es of the respective free
modules modulo the submodul es generated by the elements of Mresp. N).

» PolCheckHom computes an involutive basis of the module generated by Nfirst. Then it appliesinvolutive reduction modulo this
involutive basis to the images of the elements of Munder A (considered as a homomorphism between free modules mapping row
vectors). PolCheckHom returns the list of normal forms computed by PollnvReduceof these images. Note that the result isaways a
list of lists even in case A maps into afree module of rank 1.

« Given the result of PolCheckHom, one therefore can check whether the submodule of relations generated by Mmaps to zero under the
map between free modules represented by A Then, A represents a homomorphism from the module presented by Mto the module
presented by Nif and only if the result of PolCheckHom consists of lists of zeros only.

« If Mand Nare lists, then the entries of Mand N are polynomialsin case of ideals, i.e. submodules of the free module of rank one, or lists

of polynomials of lengthm (resp. n), representing elements of the free module of m-tuples (resp. n-tuples) over the polynomial ring. If
Mor Nisamatrix, then the generators for the submodules are extracted from the rows of Mresp. N

¢ The parameter Ais either a matrix whose number of rows equals the rank of the free module which contains the elements of Mand
whose number of columns equals the rank of the free module which contains the elements of N, or Aisalist of lists of polynomialsin
var of the same length. In the latter case, the corresponding matrix is formed by taking the entries of A as rows. In any case, row
convection is applied, i.e., apolynomia matrix represents the homomorphism defined by multiplication of rows on the left of this

matrix.
Bl Examples:
C>wth(lnvolutive):
Example 1:
> var = [x];
[ var :=[X]
r>M:=[x]; A:=1[1]; N:= [x+1];
M:=[X]
A:=[1]
L N:=[x+1]
[ > Pol CheckHom{M A, N, var);
! [[-11]
Since the result is different from the zero tuple, A does not represent a homomorphism from the module presented by M to the module
L presented by N. In fact, there is no non-zero homomorphism between these modules:

( > Pol Hom(M N, var);



. [[[11=[ 91.[1].0.[0]]
{Examplez
[>var =[x, v];

var =[x y]
r>M:=[[x-y,0],[0, x*3]]; N:=[[x*2-y*2,0],[0,x"4]];

M := [[x-, 0], [0, %]

i | _ N:= [ - % 0, [0.%]]
:= linal g[diag](2*x+2*y, x"3);

x+2y O
SN
L o X

[> Pol CheckHom(M A, N, var);

1
v

>
|

([0, 0], [0, 0]]

The matrix A represents a homomorphism from the module presented by M to the module presented by N. But the following matrix B
L does not:
> B := linal g[diag](x+2*y, x"3);

+2y O
L 0o X
r > Pol CheckHom(M B, N, var);
L L [ +xy,0],[0,0]]
Bl See Also:




I nvolutive[ Pol Coeff] - express module élement aslinear combination of given module elements

Calling Sequence:
Pol Coeff(L,G,var)

Parameters:
L - polynomial or list (of lists of the same length) of polynomials or matrix with polynomial entries
G - list (of lists of the same length) of polynomials
var - list of variables of the polynomial ring

Bl Description:

« PolCoeff expresses (if possible) the polynomiasinL or the elements of afree module of tuples of polynomialsin the polynomial ring
with indeterminatesvar giveninL aslinear combinations of the polynomials resp. the tuples of polynomials of the same lengthinG
The result of Pol Coeff is the matrix of coefficients of these linear combinations such that the product of this matrix by the column
vector composed of the entriesin Gis the column vector of entriesinL, if al entriesinL can be expressed as linear combinations of
the entriesin G For al entries of L that cannot be expressed in this way, the remainder defined by reduction modulo the involutive
basis of Gisignored, i.e. the matrix product described before only reproduces the part of each entry of L that has zero remainder
modulo G

Technically, Pol Coeff computes an involutive basis of Gwith right hand sides first (see LnvalutiveBasis AddRhs) and then performs
involutive reduction on all elementsinL modulo thisinvolutive basis keeping all coefficients of these reductions (see PallnvReducs).
The matrix formed by these coefficients is then multiplied by the matrix composed of the right hand sides of the involutive basis
which finally yields the expressions of the entriesinL in terms of the entriesin G(if al entriesin L reduce to zero modulo the
involutive basis of G.

« The module elements to be expressed are given in the first argument L. This argument is either asingle polynomial, alist of
polynomials, alist of lists of polynomials of the same length or a matrix of polynomials. In the latter case, alist of lists of polynomials
is extracted from the matrix L by interpreting the rows of L as tuples of polynomials. A list of polynomials may either stand for several
polynomials to be expressed as linear combinations or for one element of a free module of tuples of polynomialsto be expressed as a
linear combination. The context is clear from the structure of the second argument G

¢ The second argument Gis either alist of polynomialsin the indeterminatesvar or alist of lists of the same length of polynomialsin
the indeterminatesvar .

e If Lisalist of length m(or represents a single module element) and Gis alist of length n, then the result of PolCoeffisan (mx n
)-matrix (resp. a (1 x n)-matrix) with polynomial entries.

B Examples:
C>wth(lnvolutive):

Example 1:

[>var =[x, v];

var =[x Y]
r> G = [X"2+y"2, xMN+yrh4];
L G:=[¥+y, X' +y']
r>1L := x"8+y"§;
L L:=xB+y®

r>C:= Pol Coeff(L, G var);

C:= %‘i—yzx“ﬂ/“xz—y6 +2y* §§x2+iyzé y“%

[ The matrix C gives the coefficientsin alinear combination of the polynomialsin G that equalsL.
r > map(expand, evalnm(C & Q);

L [ +y°]




[ Thiscan be done smultaneously for several polynomials:
r>L = [X"6+y"6, xN4*yr4];

L L:=DC+y0y*x]
r>C:= Pol Coeff(L, G var);
=y +yt 0

s e bl

> map(expand, evalm(C & Q);

L [ +y2 ¥ X
[ PolCoeff also accepts amatrix L instead of alist L:
r>M:= matrix([[x"6+y"6], [x 4*y~4]]);
6+y6

M:=
L gy“x“%
r>C:= Pol Coeff(M G var);

X -y +y 0

C:= 1.1 .01

| A raied F)
r>B:=mtrix(map(a->[a], §);

r > map(expand, evaln(C & B));

ga + ye%
y X
Note that all remainders of reduction modulo the involutive basis of Gare ignored:

> Pol Coef f (x+y, G var);
(0 O

var =[xy, z]
[[y, x*y*z], [y+1, O]];
G:=[lyxyz, [y+10]]

e e s O e O e e
\
1]

>L:=[-1, x*y*z];
L :=[-1,xyZ]
> C := Pol Coeff(L, G var);
C::[l -l]
> evalmC & G;
. . [1 xyZ
[>map(op, convert (% listlist));
L [-1xyZ]

See Also:



I nvol utive[ PolCoker neI] - return presentation of the cokernel of a homomor phism between two finitely presented

modules over a polynomial ring

I nvolutive[PolSum] - return Janet basis of the sum of two submodules of a free module over a polynomial ring

Calling Sequence:

PolCokernel (A,N,var)
PolSum(A,N,var)

Parameters:

A - list (of lists of the same length) of polynomials or matrix with polynomial entries
N - list (of lists of the same length) of polynomials or matrix with polynomial entries
var - list of variables of the polynomial ring

B Description:

¢ PolCokernel returns a presentation of the cokernel of the homomorphism represented by A between two finitely presented modules
over the polynomial ring invar . The domain of this homomorphism is a factor module of the free module of tuples of length equal to
the number of entriesin A (resp. the number of rows of A, if Aisamatrix). While the domain of this homomorphism does not need to
be specified for PolCokernel, a presentation of its range is given by N More precisely, the homomorphism represented by A maps into
the factor module of the free module of tuples of length equal to the length of the listsin A (resp. 1 if the entries of A are polynomials
resp. the number of colums of A, if Aisamatrix) modulo its submodule generated by the entriesinN (or the rows of N, if Nisa
matrix). The residue classes of the entries resp. rows of Ain the module presented by N generate the image of this homomorphism.

.

The entries of Aand Nare polynomialsin case the range of the homomorphism is a factor module of the free module of rank one, or
lists of polynomials of length m, representing elements of the free module of mtuples over the polynomial ring.

« Theresult is aJanet basis with respect to the ("term over position") degree reverse lexicographical ordering (cf. InvolutiveBasis). The

cokernel of the given homomorphism is the factor module of the free module of mtuples modul o the submodule generated by the
entries of the result of PolCokernel.

* PolSumisasynonym for PolCokernel. The interpretation of input and output is different in this case: The input A, Nforms two
generating sets for submodules of afree module of tuples over the polynomial ringinvar . The result of PolSumis a Janet basis for
the sum of the two submodules.

B Examples:
C>wth(lnvolutive):

Example 1: Presenting the cokernel of a homomorphism

[>var =[x, v];

var :=[x ]
r>A:=mtrix([[x*2, y*2, 0], [0, x"2, y*2]]);

A
A=
L 0 X2

r > Pol Cokernel (A, [[0,0,0]], var);
L [0, ], [, ¥2, O]]
[>N::[[x, 0, 0], [0, x, 0], [0, O, x]];

N :=[[x0,0],[0,x0],[0,0,x]]
r > Pol Cokernel (A, N, var);

L [[0,0,, [0,% 0, [x 0, 0], [0, 0, y*], [0, ¥, O]]

Example2: Computing the Janet basis of the sum of two submodules of afree module over a polynomial ring




>var = [x,V];

var =[xyl
[[X'lv y]! [01 XAZ'yAZ]];

> ML
M1:=[[x=1,y], [0, = Y]]
> M

[[x+1, yl, [0, x]1;

L
[
[
[
[> Pol Sum( ML, M2, var);

L [[1,0].[0.]. [0, X]]

See Also:
InvolutiveBasis, PalTabVar, PollnvReduce Syzygies SyzygyModulg PolResolution, PolDirectSum, Pol SubFactor, PolK ernel, PalSyzOp.

M2:=[[x+1,y],[0,X]]




I nvol utive[ Pol DEfECt] - return presentation of defect of exactness/ homology module at a certain position of a chain

complex

Calling Sequence:

PolDefect(L1,L2,var,v)
Parameters:
L1 - list (of lists of the same length) of polynomials or matrix with polynomial entries
L2 - list (of lists of the same length) of polynomials or matrix with polynomial entries
var - list of variables of the polynomial ring
v - (optional) name of the indeterminate for the Hilbert series of the homology module (default: ’s’)
B Description:

» PolDefect returns a presentation of the defect of exactness at a certain position in achain complex of finitely generated free modules
over apolynomial ring, i.e., it returns a presentation of a homology module of this chain complex.

e L1andL2 areinterpreted as matrices representing homomorphisms between finitely generated free modules over the polynomial ring
in the variablesvar , such that their composition (namely the homomorphism represented by L2 succeeding the homomorphism
represented by L1) iswell defined and gives the zero homomorphism. Row convection is applied, i.e., a polynomial matrix represents
the homomorphism defined by multiplication of rows on the left of this matrix. Pol Defect computes a presentation of the factor
module defined as the kernel of the homomorphism represented by L2 modulo the image of the homomorphism represented by L 1.

.

The entries of L1 and L2 may be polynomials or lists of polynomials of the same length which represent generators for the image of
the represented homomorphism into a free module of tuples over the polynomial ring. In the latter case, the common length of the lists
in L1 must equal the number of lists (i.e. the number of generators) inL2. If L1 orL2 isamatrix, then the generators for the image of
the represented homomorphism are extracted from the rows of L1 resp. L2.

» Sincethe result of PolDefect is a presentation of a subfactor module which is computed using Pol SubFactar, the output of PolDefectis
alist which is formatted in the same way as the output of PolSubFactor. For a description of the format of such a presentation, cf.
PolSubFactor.

¢ The optiona fourth argument to Pol Defect selects the name of the indeterminate for the Hilbert series given as third entry in the
resulting list. The default nameis’s which cannot be affected by asubs command.

Bl Examples:
C>wth(lnvolutive):

Example 1:

[>var =[x, v];
var =[x Y]

r>L11 :=mtrix(1, 2, [x*2,x*y]);
L L1:=p¢ xy
r>L2 = mtrix(2, 1, [y,-x]);

| .

HereL1 (resp. L2) represents a homomorphism from the free module of rank 1 (resp. 2) over the polynomial ring invar into the free
module of rank 2 (resp. 1) over the polynomial ring invar . The composition of the homomorphisms represented by L1 and L2 isthe

L zero homomorphism:
[ > eval m(L1 & L2);

[ O
r > Pol Defect (L1, L2, var);




q111= 0oyl 00 1+ 75 (1,017

[ The defect of exactness is generated by the residue class represented by [x y]; this generator is annihilated by x
r > Pol Defect (L1, L2, var, |anbda);

A
E[l} =[xyl 04 1+ I O]E
[ Changing the first homomorphism as follows, we obtain exactness of the chain complex at the position considered here:
r>Lla := matrix(1, 2, [x, y]);
Lla:=[Xx Y]
[ > Pol Defect(Ll1la, L2, var);
[[[1]=[0,0]], [1], 0,0, O]]

Example 2:

[>var =[x, v];

var =[x Y]
r>L1:=[x]; L2 :=10];

L1:=[X]
| L2:=[0]

[ L1 (resp. L2) represent the homomorphism defined as multiplication by x (resp. 0) from and into the polynomia ring invar .
r > Pol Defect (L1, L2, var);

=100 1+ T 110




I nvolutive[PolDimension] - return the dimension of the factor module presented by thelast computed Janet basis

Calling Sequence:
PolDimension()

Parameters:
- - none (assumes that the involutive basis has been computed before)

B Description:

« PolDimension returns the degree of the filtered Hilbert polynomial (asin PalHP) of the filtration of the factor module for which a
presentation was computed by the last call of LnvalutiveBasis as explained in PalHilbertSeries

« Note, PolDimension()-1 equals the degree of PalHilbertPolynomial().

B Examples:
C>wth(lnvolutive):
[>var =[x, Y, 2];

var =[xy, 7]
> L o= [x*y+y*zHzrx, x*y*z-1];

L :=[xy+yz+zxxyz-1]
> | nvol utiveBasi s(L, var);

[Xy+yz+zx 1+yZ2 + 2 X Y 22 +y+7]
> Pol TabVar () ;

[xy+yz+2zx[1,2 3] xy]
[1+yZ2+Z2x[1,*, 3], 22 X]

Y2 +y+z[*,23]y 7]
> Pol Di mensi on();

1
> Pol HP() ;
6s-3
> Pol Hi | bert Pol ynom al ();
6

> Pol Hi | bert Series();
4

1+3s+55°+65° +6
L 1-s
B See Also:

PolCartanCharacter.




I nvolutive[ PolDirectSumy - form the matrix whose rows define the direct sum of given submodules of free modules

over a polynomial ring

Calling Sequence:
PolDirectSum(L1, L2, ...)

Parameters:
L1, L2 - lists(or matrices) of generators of the submodule

Bl Description:

« PolDirectSum returns a matrix whose rows form a generating set of the direct sum of given submodules of free modules over a
polynomial ring.

e Theentriesof L1, L2, ... are polynomialsin case of ideals, i. e. submodules of the free module of rank one, or lists of polynomials of
the same length, representing elements of a free module of tuples over the polynomial ring. If L1 orL2, ... isamatrix, then the
generators are extracted from the rows of L1 resp. L2, etc..

¢ Theresultisapolynomia block-diagonal matrix.

Bl Examples:

C>wth(lnvolutive):
r>L1 :=[[x"2, y"r2+1], [x*y, x*z"2]];
] L1:=[DC y? + 1], [xy, xZ°]]
r>1L2 := [[x+y+z, 0, x], [x"3-1, yr2-z"2, 0]];
L L2:=[[x+y+z0,x], C-1y* -7 0]]
r > Pol DirectSum( L1, L2);

V+1 0 0 0

y xz2 0 0 O
0 x+y+z O X

L 0 xX-1 y-Z 0

See Also:



I nvol utive[PoIEuIerChar] - return Euler characteristic of a factor module of a free module over a polynomial ring

Calling Sequence:
PolEulerChar(L ,var)

Parameters:

L - list (or matrix) of generators of the submodule
var - list of variables (of the polynomial ring)

B Description:

¢ PolEulerChar returns the Euler characteristic of the moduleM presented by L (i.e., the elements of L are considered as elements of a
free module over the polynomial ring with indeterminatesvar of appropriate rank and M is the factor module of this free module
modulo the submodule that is generated by the elements of L). The Euler characteristic of afinitely presented moduleM over a

polynomial ring is defined as the alternating sum of the ranks of the free modules occurring in a free resolution of M. It is independent
of the choice of the free resolution of M.

The entries of L are polynomialsin case of an idedl, i.e. a submodule of the free module of rank one, or lists of polynomials of length
m, representing elements of the free module of mtuples over the polynomia ring. If L is a matrix, then the generators are extracted
fromtherowsof L.

« Theresult of PolEulerChar isthe non-negative integer obtained as alternating sum of the entries of the list of ranks returned by
PalResolutionDim (starting with positive sign for the last entry of thislist of ranks and running backwards through thislist). Since
PolEulerChar relies on the result of PolResolutionDim, only one involutive basis computation is needed to obtain the Euler
characteristic of M (instead of several involutive basis computations performed by PolResolution).

« For more information about Janet bases and resolutions, see W. Plesken, D. Robertz, "Janet’ s approach to presentations and
resolutions for polynomials and linear pdes’, Archiv der Mathematik, 84(1), 2005, 22-37.

Bl Examples:
C>wth(lnvolutive):
{ Example 1:
>var =[xy, z];

[ var =[xV, 7]
[ > L o= [ x+y+z, x*y+y*z+z*x, x*y*z-1];

L:=[x+y+zxy+yz+zx xyz-1]
> | nvol utiveBasi s(L, var);

L [X+y+zy +yz+2Z,-1+2°, y+2°y]
r > Pol TabVar () ;

[x+y+z[xV2,X
Y +yz+2,[*y.2,¥’]
[-1+Z[*,*, 2], Z°]

[y+2%y,[*,*,2,2y]

> Pol Resol utionDi m(L, var);
[2,5,4,1]
> Pol Eul er Char (L, var);
0
> Pol Resol ution(L, var);

T



0 0 y -1
%ux 1 -y 0
3 2
2 -z 7 —1+23§
1-7° 0 z+x 1

N
<
|
N
<
s
+
N
w
'
x

O

W -yz-7* x+y+z 0 O

Example 2:

>var = [x,y];

var :=[x V]
r>L = [[x*2-y,y*2,0],[x,y,x]1;

L:=[DE-y,y% 0L [x v ¥]

[ > Pol Resol utionbDi n(L, var);
[1,3 3]
[ > Pol Eul er Char (L, var);
1
> Pol Resol ution(L, var);
Vx+Xy-y* x-x

-1 X ), +2 +xy X

L y X

Bl See Also:




I nvolutive[ POIEXt1] - return presentation of thefirst extension module of a finitely presented module over a polynomial

ring

Calling Sequence:
PolExt1(M,var,v)

Parameters:
M - list (of lists of the same length) of polynomials or matrix with polynomial entries
var - list of variables of the polynomial ring
v - (optional) name of the indeterminate for the Hilbert series of the subfactor (default: ’s’)

B Description:

» PolExt1 returns a presentation of the first extension module with values in the polynomial ring with indeterminatesvar of the
module presented by M(i.e., the elements of Mare considered as elements of a free module of tuples over the polynomial ring with
indeterminatesvar of appropriate rank, and PolExt1 computes the extension module of the factor modules of the respective free
module modulo the submodule generated by the elements of M.

If Misalist, then the entries of Mare polynomialsin the case of anidedl, i.e. a submodule of the free module of rank one, or lists of

polynomials of length m, representing elements of the free module of m-tuples over the polynomial ring. If Mis amatrix, then the
generators for the submodule are extracted from the rows of M

« Since the result of PolExtl is a presentation for a defect of exactness of a chain complex (i.e. ahomology module), PolExt1 computes
this presentation using PolSubFactar. The output of PolExtl is therefore alist which is formatted in the same way as the output of
PalSubFactor. For a description of the format of such a presentation, cf. PolSubFactor.

The optional third argument to PolExt1 selects the name of the indeterminate for the Hilbert series. The default nameis’s which
cannot be affected by asubs command.

Bl Examples:
C>wth(lnvolutive):

{ Example 1:

>var = [X];

var =[]
>L:=[[x,1,1], [1,x,1]];

L:=[[x11],[Lx1]]

[([[1]=[01]], [-1+X] L [0]]
>L:=[[x,1], [1,x], [1,1]];

L:=[[x 1], [1, %], [1, 1]]

[
[
[ > Pol Ext 1(L, var);
[
[ > Pol Ext 1(L, var);

[[[1] = [1v -1, O]]‘ [_1 + X]‘ 1 [0]]
Example 2:

[>var =[x, y];
var =[x Y]
r>L:=[[y, x*ty, 0], [y, O, y*2]];

L L :=[[y: xy; O], [, 0, y°]]
r > Pol Ext 1(L, var);

s2
| E[l, 0]=[0, 1], [0, 1]=[1, 0]], [[y Y1, [0, Y*1, [0, xy]], 2+ 35+ ZTS, (2, O]E
[>L =100y, ylI. [x*y, O], [0, y*2]];




L L=y, vl [xy, 0], [0, Y]]
> Pol Ext 1(L, var);

s
I E[L 0]=[10,y1,[0,1]=[1,x O]], [[O, y]. [y OI], 2+ 2 g [2 O]E
Bl See Also:

InvolutiveBasis, PollnvReduce, PolHilbertSeries, Syzygies, SyzygyModule PolResolution, Pol SubFactor, PalK ernel, PolCokernel,




I nvol utive[PoI Eth] - return presentation of an extension module of afinitely presented module over a polynomial ring

Calling Sequence:
PolExtn(g,M,var,v)

Parameters:

q - non-negative integer

M - list (of lists of the same length) of polynomials or matrix with polynomial entries

var - list of variables of the polynomial ring

v - (optional) name of the indeterminate for the Hilbert series of the subfactor (default: ’s’)
B Description:

» PolExtn returns a presentation of theq-th extension module with valuesin the polynomial ring with indeterminatesvar of the module
presented by M(i.e., the elements of Mare considered as elements of a free module of tuples over the polynomial ring with
indeterminatesvar of appropriate rank, and Pol Extn computes the g-th extension module of the factor modules of the respective free
module modulo the submodule generated by the elements of M.

If Misalist, then the entries of Mare polynomialsin the case of an idedl, i.e. a submodule of the free module of rank one, or lists of

polynomials of length m, representing elements of the free module of mtuples over the polynomial ring. If Mis amatrix, then the
generators for the submodule are extracted from the rows of M

» Sincetheresult of PolExtn is a presentation for a defect of exactness of a chain complex (i.e. a homology module), PolExtn computes
this presentation using PolSubFactor. The output of PolExtn is therefore alist which is formatted in the same way as the output of
PalSubFactor. For a description of the format of such a presentation, cf. PolSubFactor.

The optional fourth argument to Pol Extn selects the name of the indeterminate for the Hilbert series. The default nameis’s which
cannot be affected by asubs command.

Bl Examples:
C>wth(lnvolutive):

{ Example 1:
> var = [x];

var =[]
>L:=[[x,1,1], [1,x,1]];

L:=[[x11][1x1]]

> Pol Extn(1, L, var);
[[[1]=[0, 1]}, [-1 +X], 1, [0]]
> Pol Extn(2, L, var);

([[11=[0]}, [1] 6, [O]]

[

[

{ > Pol Extn(0, L, var);
[

E

Example 2:

[> var 1= [x,y];

var :=[x ]
r>L:=[[y, x*yv, 0], [y, 0, y*2]];

L :=[[y, xy, O], [; 0, y*1]

f > Pol Extn(0, L, var);



1
0 g0

- > Pol Extn(1, L, var);
2

[LW=[QHJQ1FﬂL0HHMwJquJQXﬂL2+3S+21_§[ZWE

[ > Pol Extn(2, L, var);
([[1]=[0]]. [1]. G, [0, O]]

Bl See Also:




I nvolutive[ POIHF] - computethefiltered Hilbert function for the factor module

Calling Sequence:

PolHF(p)
PolHF()

Parameters:
p - " " (empty string) or natural number

B Description:

) p
e Let Z q\/ be the Hilbert series as discussed in PolHilbertSeries Then PolHF( p) returns z d for natural numbersp and prints the
i=0 i=0
corresponding function in casep is the empty string.

« PalHilbertFunction, of which the present command is a summed up version and which refers to the induced grading rather than to the
filtration, must not be confused with PolHF ().

¢ PolHF() returns a function expecting one parameter p which computes PolHF( p).

Bl Examples:
C>wth(lnvolutive):
[> var 1= [X,Y,z,V];
var =[xy, zV]
[ > L o= [ x*y+y*z+z*x, x*y*z-v];
L :=[xy+yz+zx xyz-V]
[ > B := I nvol utiveBasis(L, var);
B:=[Xy+yz+zx V+yZ? + 22X Y 72 + vy + V7]

> Pol Hi | bert Series();

1 1
1+4s+9s° +155° +s"HI5T——+6 ;
l1-s "(1-9)

[>f := Pol HF();
f:= PolHF
[>f(2);
14
[>f(20);
1202
[> Pol HF( 20) ;
1202
r > Pol HF("");
s =0: 1
s =1 5
s =2 14
s =3 29
L s >= 4: 3*sM2+2
r > Pol HP();
L 3s5%+2
r > Pol Hi | bert Function("");
DimM(MO0) = 1
Dm(M1) =4
DmM2) =9
Dim(M3) = 15
L LDmMMs) = -3+6*s, for s >= 4
Bl See Also:




I nvolutive[ POIHP] - computethefiltered Hilbert polynomial for the factor module

Calling Sequence:

PolHP(p)
PolHP()

Parameters:
p - natural number or name of an indeterminate

B Description:

) p
e Let Z q\/ be the Hilbert series as discussed in PolHilbertSeries Then PolHP( p) returns z d for natural numbersp larger than the
i=0 i=0
index of regularity and the corresponding polynomial inp inducing this function in casep is an indeterminate. The index of regularity
can be computed by PollndexRegularity. Note, al thisinformation can aso be extracted from the command PalHE.

¢ PolHP() returns the above polynomial with 's” as the default name of the indeterminate. “s” cannot be affected by asubs command.

 PolHilbertPolynomial, of which the present command is a summed up version and which refers to the induced grading rather than to
thefiltration, must not be confused with PolH P().

Bl Examples:
C>wth(lnvolutive):
[> var 1= [x,y,z,Vv];
var:=[xy,zV]
[ > L 1= [x*y+y*z+z*x, Xx*y*z-v];
L :=[xy+yz+zx Xyz—V]
r>B := InvolutiveBasis(L, var);

B:= [Xy+yz+zx Vv+yZ? + 22X Y’ 72 + vy + V7]
> Pol Hil bertSeries();

2 3 4 1 1
1+4s+9s°+158°+s 157 +6 >
L 1-s (1-y9)
> Pol HP();
L 3s*+2
[ > Pol HP( 20) ;
1202
r > Pol HF("");
s =01
s =15
s =2: 14
s =3 29
L s >= 4: 3*s"2+2
r > Pol HP(| anbda) ;
L 3N +2
[ > subs(l anbda=3, %;
29




Involutive[PolHilbertFunction] - computethe graded Hilbert function

Calling Sequence:

PolHilbertFunction(p)
PolHilbertFunction()

Parameters:
p - " " (empty string) or natural number

B Description:

e Let Z q\/ be the Hilbert series as discussed in PalHilbertSeries Then PolHilbertFunction( p) returnsdp in casep isanatural
i=0
number and prints the function's - d, in casep isthe empty string.

¢ PolHF, which isasummed up version of the present command and refers to the filtration rather than to the induced grading, must not
be confused with PolHilbertFunction.

¢ PolHilbertFunction() returns a function expecting one parameter p which computes PolHilbertFunction( p).

B Examples:
C>wth(lnvolutive):
[> var = [X,Y,z,V];
var =[x Y,z V]
T >L = [x*y+y*z+z*x, x*y*z-v~"3];
L L :=[xy+yz+zx xyz— V]
r>B := InvolutiveBasis(L, var);

L B:=[xy+yz+zx V¥ +yZZ +ZZx YV 7+ Vy+V* 7]
r > Pol Hi | bertSeries();

1 1
1+4s+9s°>+15s° +s4§15—+6 E

L 1-s “(1-9)?
> f := Pol H | bert Function();
[ f:= Involutive/PolHilbertFunction
> f(2);
[ 0
> f(20);
[ 117
> Pol Hi | bert Functi on(20);
[ 117

Hi

blert Function("");
4
9
1

-3+6*s, for s >= 4




I nvolutive[PolHilbertPolynomial] - computethe graded Hilbert polynomial for the factor module

Calling Sequence:

PolHilbertPolynomial (p)
PolHilbertPolynomial ()

Parameters:
p - natural number or name of an indeterminate

B Description:

e Let Z q\/ be the Hilbert series as discussed in PolHilbertSeries Then PolHilbertPolynomial( p) returnsohJ in casep isanatural
i=0
number greater than or equal to theindex of regularity. If p isthe name of an indeterminate, then the Hilbert polynomial inp is
returned. The information is derived from the last call of InvolutiveBasis Note, this same information can be extracted from the
command PolHilbertFunction.

* PolHP, which isasummed up version of the present command and refers to the filtration rather than to the induced grading, must not
be confused with PolHilbertPolynomial.

¢ PolHilbertPolynomial() returns the graded Hilbert polynomial of the associated graded modul e of the residue class module modulo
the module whose involutive basis has been computed last by InvolutiveBasis Note, this same information can be extracted from the
command PolHilbertFunction.

¢ Asoptiona parameter aname p for the indeterminate of the Hilbert polynomial can be given. The default name of the indeterminate i<
's'. It will not be affected by a subs command.

B Examples:
C>wth(lnvolutive):
[> var = [X,Y,z,V];
=[xyzV
T >L = [x*y+y*z+z*x, x*y*z-v~"3];
L L :=[xy+yz+zx xyz— V]
r>B := InvolutiveBasis(L, var);

L B:=[xy+yz+zx V¥ +yZZ +ZZx YV 7+ Vy+V* 7]
r > Pol Hi | bertSeries();

1 1
1+4s+932+1553+s4§15_ +6 ZE
1-s (1-59)

[ > Pol Hi | bert Pol ynoni al ()
-3+6s
[ > Pol Hi | bert Pol ynom al (6);
33
[> Pol HP( 6) ;
110
{ > Pol Hi | bert Function("");
DimM(MO) =1
DmMM1) = 4
D (M 2) :9
Dim(M3) =
DmMs) = 3+6* s, for s >=
[ > Pol Hi | bert Pol ynomi al (I anmbda) ;
3+6A
[ > subs(l anbda=3, %;
15







Involutive[PolHilbertSeries] - Hilbert seriesof the factor module presented by thelast computed Janet basis

Calling Sequence:
PolHilbertSeries(v)

Parameters:
v - (optional) name of the indeterminate (default: ’s’)

Bl Description:

« PolHilbertSeriesreturns the generating function counting - according to the standard degrees - the standard monomial basis vectors of
the factor module F of the free module of mtuples over the polynomial ring modulo the submoduleM generated by the Janet basis
produced by the last call of InvolutiveBasis

¢ The free module of mtuples over the polynomial ring is graded by the standard grading (maximal degree of the components) and
therefore induces a grading on its residue class module G modulo the submodule of the leading terms of M (but unfortunately in
genera not onF). Note, this submodule, and therefore also its Hilbert series, depends on the term order chosen in the call of
InvolutiveBasis PolHilbertSeriesreturns the Hilbert series of the graded module G. This Hilbert series agrees with the generating
function described above, since the standard bases for both F and G are represented by the same monomial elements in the module of
m-tuples.

In the standard case of degree reverse lexicographical monomial order (default value or parameter 2 in the call of I nvolutiveBasis) a
change of the ordering of the variables does not change the resulting Hilbert series though it might change the graded factor moduleG.
In the specia case, where the Janet basis consists of homogeneous elements, i. e. M is a graded submodule and therefore F also
inherits a grading, the Hilbert series computed by the present command also is the Hilbert series of F.

In the non-standard case of pure lexicographical monomial order (parameter 1 or 3 in the call of I nvolutiveBasis) the result highly
depends on the order of the variables and is usually different from the Hilbert series taken in the standard case.

¢ The output is the corresponding Hilbert series z d V', where the d arethe dimensions of the homogeneous components of G defined
i=0
above.

» The default name of the indeterminatev is’s'. It cannot be affected by asubs command.

* Note, if one has assigned non-standard degrees to the variables or to the standard basis vectors, the command PolHilbertSerieswill
proceed from the leading terms computed by InvolutiveBasis but then reassign the degrees 1 for the variables and O for the basis
vectors. Thisis usually not what one wants: To proceed with the introduced grading one has to work with PolWeightedHilbertSeries

B Examples:

C>wth(lnvolutive):

[ Intheideal case, the Hilbert seriesisthe Hilbert series of the graded ring given by the polynomial ring modulo the ideal of the
leading monomials as listed in the last items of the tuples in the output of Pol TabVar.

[> var 1= [x,y, z];

=[xy

r>L := [x+yr2, y+z"°2];

L L = [x+V? y+ 7%

r > Invol utiveBasi s(L, var);

L [y+Z% x+ V% 22y-X]

r > Pol TabVar () ;

ly+2%[%*,2,2°]

[x+ Y2 [x Y 2L Y]

L [Zy-x[x*2,2°Y]
r > Pol Hi |l bertSeries();




3

) S
1+3s+4s " +47—
1-s

[ Note, the Hilbert series changes, if one works with the pure lexicographical order:
r > Invol utiveBasis(L, var, 1);
[y+Z% x+Z%]
> Pol Hil bertSeries();
1 S

—

1-s

r > Pol TabVar ();
ly+2, [y, 2y

[x+2',[xy2,%

Hereisamodule example:
>L2 = [[x,-y]. [y, x]];
L2:=[[x ], [y H]
> | nvol utiveBasis(L2, [x,y]):
[Iy: ¥, [% -1
> Pol H | bert Seri es(I| anbda) ;

5 2L
LI

T

[Ly: X1, [x V1, [x 2]]
([ =1, [x 1, [% 1]

{ > Pol TabVar () ;

Bl See Also:
InvolutiveBasis Pol TahV ar, FactorModuleBasis JanetGraph, PolHilbertPolynomial, PolHP, PolHilbertFunction, PolHF,
I | 1y, PolCartan el bert Serics < Ll <  bertSa




I nvolutive[POIHOM] - return presentation of the module of homomor phisms between two finitely presented modules over

a polynomial ring

Calling Sequence:
PolHom(M,N,var)

Parameters:
M - list (of lists of the same length) of polynomials or matrix with polynomial entries
N - list (of lists of the same length) of polynomials or matrix with polynomial entries
var - list of variables of the polynomial ring

B Description:

* PolHom returns a presentation of the module of homomorphisms from the module presented by Mto the module presented by N(i.e.,
the elements of Mand N are considered as elements of a free module of tuples over the polynomial ring with indeterminatesvar of
appropriate rank, and PolHom computes the homomorphisms between the factor modules of the respective free modules modulo the
submodules generated by the elements of Mresp. N).

 |If Mand Nare lists, then the entries of Mand Nare polynomialsin case of ideals, i.e. submodules of the free module of rank one, or lists

of polynomials of lengthm (resp. n), representing elements of the free module of m-tuples (resp. n-tuples) over the polynomial ring. If
Mor Nisamatrix, then the generators for the submodules are extracted from the rows of Mresp. N

« Theresult of PolHom isalist with four entries. The first one defines the abstract generators of the constructed presentation of the
module of homomorphisms. The second entry isalist of the relations imposed on the abstract generators of the presentation. Finally,
the third and the fourth entry of the result give the Hilbert series (see PalHilbertSeries) resp. the Cartan characters (see

PaolCartanCharactey) of the module of homomorphisms.

* We denote by F1resp. F2the free module of tuples over the polynomial ring with indeterminatesvar , whose rank equals the length of
thelistsin Mresp. N (where the length is 1 in the case of ideals), and we denote by F the module of homomorphisms fromF1to F2
(represented here by matrices with polynomial entries). Then the first entry of the result of PolHom also gives an embedding of the
presented module of homomorphisms into the factor module of F modulo the diagonal embedding of Ninto F. In other words, the first
entry of the result establishes a correspondence of the abstract generators of the presentation to representatives of residue classesin
the factor module quoted before.

.

Thefirst entry of theresultisalist of equations, where the left hand sides are standard basis vectorsin their canonical order, i.e. lists
having exactly one entry equal to 1, the other entries being 0. The common length of these listsis the number of abstract generatorsin
the presentation to be defined, and the left hand side of theith equation is theith standard basis vector. The right hand side of theith
equation is amatrix representing aresidue class in the factor module described in the previous point which corresponds to theith
abstract generator. Hence, the right hand sides of the first entry provide a generating set for the module of homomorphisms.

« The second entry of the result isalist of polynomialsif the constructed presentation involves only one abstract generator and alist of
lists of polynomials of the same length if there are more than one abstract generator. In the latter case, the common length of these
lists equals the number of abstract generators. If the constructed presentation involves only one abstract generator, then the
polynomials in this second list of the result generate the annihilator of this single generator in the polynomial ring. More generaly, in
the case of several abstract generators, the lists of polynomials correspond to linear combinations of the abstract generators, where the
coefficient of theith generator is theith polynomial in thelist. All these linear combinations then generate all relations of the abstract
generators, i.e. generate the submoduleR of the free module Sover the polynomial ring with indeterminatesvar , where the rank of S

equal s the number of abstract generators, such that the module of homomorphismsisisomorphic to the factor moduleS/ R

« Thethird entry of the result is the Hilbert series (according to standard degrees) of the module of homomorphisms, see
Hil ;

« Thefourth entry of the result isthe list of Cartan characters of the module of homomorphisms as defined in Pol CartanCharacter.

Examples:
C>wth(lnvolutive):



Example 1:

[> var = [X];
var =[]
r>M:=[x]; N:=[x+1];
M:=[x]
L N:=[x+1]

r > Pol Hom{M N, var);

L [[ra1=[ a1[110.[01]

There is no non-zero homomorphism from the module presented by M over the polynomial ring with indeterminatexto the module
L presented by N (because the former is atorsion module).

Example 2:

[>var = [x,v];

var =[x Y]
r>M:=mtrix([[x,y]]);
| M:=[X V]
r>N:=mtrix([[0,x*2,y"2], [0, x*y"2,x"2*y]]);
N A
N:=% %
| xXy? Xy
r>H:= PolHom(M N, var);

0 0 0 v O 0 Q0 0 x O
H:= %L0,0,0,0F% %{0,1,0,0,0]2% %{0,0, 1,0,0]2%y %[0,0,0, 1,0]:5 %
0 0 x 0 x 0 X 0 O 0 0 vy

éo y2 Xy% 1 1 é
[0,0,0,0,1]= [[0,0,0,0,%], [, 0,0,% 0],[0,%0,y, 0], [xy, ¥, 0,0,y]], 5+ 7s+s* Ff T+ > %[7, 1]
00 0 1=s (-9

The presentation of the module of homomorphisms between the modules presented by M and N involves 5 abstract generators which

L correspond to
[ > H1J;

0 0 -y 0 v O 0 O 0 x O
él,0,0,0,0]:é %[0,1,0,0,0]25 é[o,o,l,O,O]:g‘y %{0,0,0,1,0]2% %
0 0 x 0 X 0 X 0 O 0 0 vy
0 ¥ xy
[0,0,0,0,1]2% %
L 0 0 O

[ Therelations of the abstract generators in the presentation are given by:

[ >H2;

L [[0,0,0,0,x], [-%0,0,% 0], [0,% 0, ; 0], [xy, y* 0,0, Y]]
[ The Hilbert series (according to standard degrees) of the module of homomorphismsis:

[ > H3I;

1 1
5+7s+s° T+ >
L l1-s (1-9)
[ The Cartan characters of the module of homomorphisms are:
[ > H 4],
[7.1]

See Also:



I nvolutive[ POIHOMHOM] - represent the canonical homomor phism from a finitely presented module to its bidual asa

matrix

Calling Sequence:
PolHomHom(M ,var,H)

Parameters:
M - list (of lists of the same length) of polynomials or matrix with polynomial entries
var - list of variables of the polynomial ring
H - (optional) symbol to which the result of PolHom (applied to the relationsin PolHom(Mvar )) is assigned

B Description:

¢ PolHomHom returns a matrix which represents the canonical homomorphism from the module presented by Mto its bidual, i.e. to the
module of homomorphisms that map homomorphisms, from the module presented by Mto the polynomial ring in var , to the
polynomial ringinvar.

« Theentries (or rows) of Mare considered as elements of a free module of tuples over the polynomial ring with indeterminatesvar of
appropriate rank, and the module presented by Mis the factor module of this free module modulo the submodul e generated by the
entries (or rows) of M

¢ Theresult of PolHomHom is a matrix which represents the homomorphism which maps an element of Mto the map which evaluates
homomorphisms from the modul e presented by Mto the polynomial ring at this element of M

« Sincerow convention is applied, a homomorphism from the module presented by Mto the polynomial ring is represented by a column
(i.e. the homomorphism is given by multiplication of rows on the left of this column). Row convention is retained for the result of
PolHomHom: Multiplying arow r, which represents aresidue classinM to the left of the resulting matrix, one obtains arow whose
entries are the values of the residue class represented by r under the homomorphisms represented by the generatorsin the presentation
of the module of homomorphisms computed by PolHom applied to M Hence, if homomorphisms from the module presented by Mto
the polynomial ring are now represented by columnsw.r.t. the basis of generators given by PolHom, then the multiplication of the
row defined before by the column representing the homomaorphism yields the value of the residue class represented by r under this
homomorphism.

 If Misalist, then the entries of Mare polynomialsin case of an idedl, i.e. a submodule of the free module of rank one, or lists of
polynomials of length m, representing elements of the free module of m-tuples over the polynomial ring. If Mis a matrix, then the
generators for the submodule are extracted from the rows of M

¢ Asafirst step, PolHomHom computes a presentation of the module of homomorphisms from the module presented by Mto the
polynomial ring invar using PolHom. Then PolHom is applied to the relations of this presentation so that a presentation of the range
of the canonical homomorphism under consideration is obtained. If the optional argument His present, then PolHomH om assigns the
latter presentation to the symbol H
Bl Examples:
C>wth(lnvolutive):

{ Example 1:

>var = [X];
var =[]

>M:=[[x,1,1], [1,x,1]];

M:=[[x1,1],[1x1]]

Pol Hom(M [0], var);

[
[>H:
|



1 T

1
[0} 7o 11

\
[¢]
1]

Pol HomHom( M var);

X—1

>r [[1,0,0]T;
r:=[[1,0,0]]
> eval mr & e);
. = T . .
Here, all homomorphisms from the module presented by Mto the polynomial ring are represented by multiples of the generator given
in thefirst entry of H. The evaluation of this generator at the residue class represented by r gives 1, and each multiple of this generator
has the according multiple of 1 asvalue.

Example 2:
>var = [x,Y,z];

ar =[xy, 7]
>M:=mtrix([[0,x,-y,0], [-x,0,2,0], [y,-2,0,0]]);

0 x vy O

> H := Pol Hom(M [0], var);

1,0]= [0 1]=

o
=

([0, 0]}, 2 )3, [0,0, 2]@
> HH := Pol Hom(H 2], [0], var);

HH:=%10]5 é[o,ug %{[aonz 5.000,2]
1 0 -s)

> e := Pol HonHom(M var, HHV);

-Z 0
-y 0
e:=
-X 0
0 1
> HHM
0 1 1
%L 0]=§ é[o' 1]=% %[[0, 0112 3 10,0, 2]%
1 0 (1-9)
>r :=1[[1,0,1,1]];
r:=[[1,01,1]]
>v = evalnmr & e);
V= [—Z—X 1]

>h:=evalm[[2],[-1]1]);



43

[2z-2x-7]]

[ Here, the module of homomorphisms from the module presented by Mto the polynomial ring is presented with two generators @1, @2
see the first component of H. The image of the residue class represented by r in Munder the canonical homomorphism represented by €
isrepresented by v. In this example the homomorphism 2 91— @2s evaluated at the residue class represented by r by multiplying the

row vby the columnh.

[> eval m(v & h);

Bl See Also:




I nvolutive[Poll ndexRegularity] - return index of regularity of the graded module of a residue class module

Calling Sequence:
PolIndexRegularity()

Parameters:
- - none (assumes that the involutive basis has been computed before)

B Description:

e Let Z q\/ be the Hilbert series as discussed in PolHilbertSeries Then Poll ndexRegularity( p) returnsthe index of regularityr,i. e.r
i=0
isthe biggest integer for which the (graded) Hilbert polynomial and the (graded) Hilbert function give different values, cf.

PolHilbertPolynomial, PolHilbertFunction, i. e. the smallest r such that the filtered Hilbert function PolHE and the filtered Hilbert
polynomial PolHP agree on all integers greater or equal tor.

¢ The command refersto the last call of InvolutiveBasis

Bl Examples:

C>wth(lnvolutive):

[> var 1= [x,y, z];
=[xy

[ > L o= [ x*y+y*z+z*x, x*y*z-1];

L :=[xy+yz+zx xyz—1]

r > Invol utiveBasi s(L, var);

[Xy+yz+zx 1+yZ? + 22X Y 22 +y+7]

[ > Pol | ndexRegul arity();
2

r > Pol Hi | bert Seri es(l anbda);
4

+3A+5N%+6A°% +
1+3A+5N° +6)° +67 1

r > Pol TabVar ();
[xy+yz+2x[1,2 3],xy]
[1+yZ+Z°x[1,*, 3], Z°X]

L Y Z2+y+2[* 23]y’ 7]
Pol Hi | bert Pol ynomi al () ;

[ —
v

6
> Pol Hi | bert Function("");
DimM(MO0) = 1
DmMM1) =3
DMM?2) =5
DMM3) =6
LDmMs) =6, for s >= 4
[>POIHP(),
6s-3
> Pol HF("");
s =01
s =1 4
s =29
s =3: 15
L s >= 4: 6*s-3
See Also:

InvolutiveBasis Pol TabV ar, PolHilbertPolynomial, PolHP, PolHilbertFunction, PolHE, Pol CartanCharacter.



I nvolutive[ Poll nter section] - intersect two submodules of a free module over a polynomial ring

Calling Sequence:
PolIntersection(L1,L2,var)

Parameters:

L1 - list(of lists of the same length) of polynomials or matrix with polynomial entries
L2 - list (of lists of the same length) of polynomials or matrix with polynomial entries
var - list of variables of the polynomial ring

B Description:

 Poll ntersection computes a Janet basis of the intersection of the submodules generated by L1 and L2 in afree module of tuples over
the polynomial ring in the variablesvar .

e Theentriesof L1 and L2 are polynomialsin case of ideals, i. e. submodules of the free module of rank one, or lists of polynomials of
length m, representing elements of the free module of mrtuples over the polynomial ring. In the latter case, thelistsin L1 and L2 must
be of the same length. If L1 or L2 is a matrix, then the generators are extracted from the rows of L1 resp. L2.

« Theresult of Pollntersection isalist of polynomials or alist of lists of polynomials according to the structure of the input.

Bl Examples:
C>wth(lnvolutive):

Example 1: intersection of ideals

[>var =[x, v];
var = [x Y]

r>L1 := [x"2+y"2-1]; L2 := [Xx-VY];

L1:=[C+y* -1]

L L2:=[x-Y]

Pol I ntersection(Ll1, L2, var);

L DC+ Y x=x=xCy -y +y]
factor(%1]);

L (x=Y) (¢ +y* - 1)
r> L1 ;= [x"2+y"2-4, x"2-y"2]; L2 := [x"2-x-1];
LL:=[x+y -4,x -y]
L L2:=[¥* - x-1]

Pol I ntersection(Ll1, L2, var);

L [P X+2X+Y* X =2X —y* 42, B +2+X' =X +2x Y +2+X Y —2y? x —2XC +4X]

1
\%

1
\

1
\

Example 2: intersection of two submodules of the free module of rank 2 over the polynomial ring in the variablesx y, z

[>var =[x, Y,2];

var =[xy, 7]
r>1L1 := [[x"2+y"2, z"2], [x™4, 0]]; L2 :=[[z"2, x"2+y"~2], [0, x"4]];

L1:= [ +y% 2] [, 0]
| L2:=[[Z% ¥ + ], [0, x*]]

> Pol Intersection(Ll, L2, var);

L [[0.2° '], [2° X", O]]

Bl See Also:
| PalDirectSum, PolSubFactar, PolSyzOp.




I nvolutive[Poll nvReduce] - return the normal form with respect to a Janet basis

Calling Sequence:
PollnvReduce(f,B,var,ord,mode)

Parameters:

f

B
var
ord

(tuple of) polynomial(s) (or list of such) to be reduced
Janet basis

list of variables (of the polynomial ring)

(optional) type of monomial ordering

mode - (optional) string specifying options for the computation

Bl Description:

C

|

[
[
[

Poll nvReduce returns the normal form representing the residue class of f modulo the submodule of the free module of m-tuples
generated by the Janet basisB. Thisis done by involutive reduction. Note, if m=1, brackets can be omitted: one dealswith anidedl in
the polynomial ring. If f isalist of (tuples of) polynomials, then thelist of the corresponding normal formsis returned.

The Janet basisBisgiven asalist of lists of polynomialsinvar inthe module case and asalist of polynomialsin the ideal case.
Note, the program does not check whether B is a Janet basis with respect tovar and or d. (Changingor d is not so critical, however,
changing the ordering invar can result in wrong answers.)

As optional fourth parameter the values 1 to 4 are accepted which might affect the sequential order in which the reduction steps are
performed. It does not affect the final coset representative. If or d = 1, highest terms with respect to the pure lexicographical ordering
are reduced first, even if the Janet basis is taken with respect to degree reverse lexicographical ordering. In case or d = 2 the default
degree reverse lexicographical order istaken. The values 3 and 4 select pure lexicographical ordering and degree reverse
lexicographical ordering resp., but change from "position over term" order to "term over position" order.

If InvolutiveBasiswas called with user defined degrees for variables and / or standard basis vectors, the corresponding parameter var
has to be specified here in the same manner.

If the letter "C" is present in npde, then Poll nvReduce additionally returns the coefficients of the elements subtracted from the input

to obtain the normal form representative (remainder) with respect to the Janet basis. (For a more comfortable way of using this option,
seePal Caoeff.)

If the letter "S" is present in node, the program uses simplify instead of expandin the normal form procedure. If the polynomialsin
the input B contain nonrational coefficients, more precisdly, if the ground field contains algebraic elements over the rationals (RaotOf
), then simplify is used instead of expand automatically.

If Bis aJanet basis with right hand sides (cf. InvolutiveBasis), one can specify aright hand side for f in order to let PollnvReduce
perform any operation on both left and right hand side. For instance theinput f =f is turned into the equation of the normal form
representative (remainder) on the left hand side andf minus an explicit linear combination of the right hand sides of the elements of
the Janet basis corresponding to the reduction. Usually the right hand sides of the Janet basis will express the elements of the Janet
basisin term of the original generators. Therefore the right hand side of the equation will then also express the reducing element in
terms of the original module generators.

Bl Examples:
> w th(lnvolutive):
Example 1:
>var = [X,Y, z];
var:=[xy,7]
> L o= [ x+y+z, xX*y+y*z+z*x, x*y*z-1];

L :=[x+y+zXy+yz+zxxyz—1]

> B := |l nvol utiveBasis(L, var);



]

[

1 T

Bi=[x+y+zy +yz+7, 22~ 1, y+Z’y]
> Pol | nvReduce(z"4, B, var);

z
> f = xN2+yN2;
f:=x+y
> Pol | nvReduce(f, B, var);
2
A

How can the remainder —z> be expressed as linear combination inf and the basisB?
> Pol | nvReduce(f, B, var, "C");
[_sz [X_ y-2 2,0, O]]
> f - expand((x-y-z)*B[1] + 2*B[2]);
2

A
If one wants the coefficients with respect to the original generators, one has to give them names as follows:
> L1 = [x+y+z=a, x*y+y*z+z*x=b, x*y*z-1=c];

L1:=[x+y+z=a xy+yz+zx=Db,xyz-1=c]
> Bl := InvolutiveBasis(L1, var);

Bl:=[x+y+z=a Yy +yz+z°=za+ya-b 2 -1=72a-zb+cy+Z y=cy+az’y-bzy]
> Pol TabVar () ;
[x+y+z=2a[xV,2],%
[ +yz+Z®=za+ya-b,[* 2, y]
[Z2-1=Za-zb+g[*, *, 2], Z°]
[-y+Zy=cy+az’y-bzy[*,* 2,2°Y]

X +y

Z*=-za-ya+2b-xa+x* +y°
A list of polynomials can be reduced in one step:
> Pol | nvReduce([ x"2+y~2, x*y+y*z=p, x*y*z], Bl, var);
[-Z%,yz+ZZ=za-b+p,1]
Changing the polynomial ordering and the ordering of variables respectively:
> Pol | nvReduce(f, Bl, var, 1);

> f;

> Pol | nvReduce(f=f, B1l, var);

72

> varnew := [z,y,X]: PollnvReduce(f, B, varnew);

X +y
Example 2: A sample calculation for modules over the polynomial ring Q[x\:

> L2 = [[XAZ'l! 0]! [X*y! X*y]! [O! yAZ-l]],
_ _ L2:=[[x*~ 1,0], [xy, xy], [0,y* - 1]]
I nvol utiveBasi s(L2, [x,Yy]);

B2:=[[0,y? - 1], [xy: xy], [y>, ], ¥ = 1, 0], [y* =y, O], [0, =%+ y* X]]
> Pol | nvReduce([ x*y~3,0], B2, [x,y]);

> B2 :

[0, =xy]
Example 3: Using transcendental elements to express an element in terms of the generators:

> L3 := [x+y-a, Xx"2+y~2-b];
L3:=[x+y-a X’ +y* -b]
> B3 := InvolutiveBasis(L3, [x,Vy]);

1 1
. _ _ .2 _=
BS.-EGy a,y ya+oa zbé

> Pol | nvReduce( x*y, B3, [x,y]);

1.1
=,2_=
R 5b

Note this only works well becausex+ yand x* + y* are algebraically independent. In case of algebraically dependent generators
division by zero might occur. This can be overcome by using equations as in Example 1 above.



Example 4:

r> L4 = [x"2-y"3, xM+y"6];
L L4:=[-y3 X'+
r>B4 := InvolutiveBasis(L4, [x=3,y=2]);
L B4:= [x* - y3 V%, xy°]
[ > Pol | nvReduce(x"4, B4, [x=3,y=2]);

0

See Also:



I nvolutive]Poll nvReduceFast] - return the normal form with respect to a Janet basis (C++ version)

Calling Sequence:
PollnvReduceFast(f,B,var,ord,mode,opt)

Parameters:

f

B
var
ord

(tuple of) polynomial(s) (or list of such) to be reduced
Janet basis

list of variables (of the polynomial ring)

(optional) type of monomial ordering

mode - (optional) string specifying options for the computation

opt

(optional) equation specifying options for the computation

B Description:

C

|

[
[
[
[
[

Poll nvReduceF ast invokes the C++ version of the command PollnvReduce Up to now, only the algorithm for the standard setting
(degree reverse lexicographical ordering (i.e. or d is2 or 4) and default degrees) isimplemented in C++. If PollnvReduceFast is
called with a non-standard option, then PollnvReduceis applied internaly to the same data.

The parameter B should be the result of InvolutiveBasisFast. If thisis not the case, InvolutiveBasisFast is applied to B before starting
theinvolutive reductions. (See, however, the description of the option "L" below.)

The parametersvar and or d have the same meaning as in PollnvReduce

The advantage of this command is clearly the enormous speed up. (Note, you cannot interrupt this command from within Maple; you
have to kill the process"JB" instead.)

If the letter "C" is given innode, then Poll nvReduceFast additionally returns the coefficients of the elements subtracted from the
input to obtain the normal form representative (remainder) with respect to the Janet basis.

If the letter "L" is present in mode, then Poll nvReduceFast doesnot check whether the given involutive basis B equal s the one which
was computed by the last call of InvolutiveBasisFast. This option should speed up the repetitive use of Poll nvReduceFast. Note that,
even if the computations of Poll nvReduceFast rely upon the basis computed by the C++ program, the parameter B must match this
basis, since certain data (e.g. the number of entries of the tuples in the module case) are determined from B.

The only possible |eft hand side of the optional equationopt isthe string "char". If LnvolutiveBasisFast has been run before using the

option "char"=c, then this option must also be given to PollnvReduceFast in order to perform involutive reductions in characteristic ¢
(cf. Example 3).

Using the option "C++" of InvolutiveOptions, the command Poll nvReduceis replaced by Poll nvReduceFast for the current Maple
session (which has the corresponding effect on all Maple procedures that call Poll nvReduce).

Bl Examples:

> w th(lnvolutive):
Example 1:

>var =[xy, z];
var =[xV, 7]

> L o= [ x+y+z, x*y+y*z+z*x, x*y*z-1];
L:=[x+y+zxy+yz+zx xyz-1]
:= I nvol utiveBasi sFast (L, var);
B:=[x+y+z Yy +yz+7Z%, -1 yZ V]
> Pol | nvReduceFast (z*4, B, var);

\%

B

z
> Pol | nvReduceFast ( x"2+y”~2, B, var);



{ Example 2:
[> var 1= [X,Y,z];
var =[xV, 7]
[ > L = [x+y+z=[1,0,0], x*y+y*z+z*x=[0,1,0], x*y*z-1=[0,0,1]];
L :=[x+y+z=[10,0],xy+yz+zx=[0, 1, 0],xyz-1=10,0, 1]]

> B :

I nvol uti veBasi sFast (L, var);
| B:=[x+y+2z=[10,0,y*+yz+Z=[y+2-1,0], 22 - 1=[2 2z 1], yZ - y=[yZ% vz Y]]
r > Pol | nvReduceFast (z"4=[0,0,0], B, var);

z=[-2, 2, ]

[ > Pol | nvReduceFast (z*4, B, var);

z
Example 3:
[> var 1= [X,Y,z];
var :=[xy, z]
[ > L o= [ x+2%¥y+43%z, x*y+2*y*z+3*z*x, x*y*z-1];
L :=[x+2y+3zxy+2yz+3zx xyz-1]
[ > B := Invol utiveBasi sFast(L, var, "char"=7);
B:=[x+2y+3zy +2°,yZ?+47 +57' +3y+27]

[ > Pol | nvReduceFast (x*3, B, var, "char"=7);
L 47°+6
B See Also:
Lt . ’ . . . . ’ . | . . )
| SyzygyModulg SyzygyModuleFast.




I nvolutive[ Poll nvReduceGINV] - Python/C++ version of PollnvReduce

Calling Sequence:
PolinvReduceGINV (f,B,var,ord,mode,opt)

Parameters:

f

(tuple of) polynomial(s) (or list of such) to be reduced

B Janet basis

var list of variables (of the polynomial ring)

ord (optional) type of monomial ordering

mode - (optional) string specifying options for the computation

opt (optional) equation specifying options for the computation
B Description:

.

Poll nvReduceGI NV invokes the version of the command PallnvReducewhich uses the C++ module ginv for Python to perform the
involutive reduction.

The parameter B should be the result of InvolutiveBasisGINV. If thisis not the case, InvolutiveBasisGINV is applied to B before
starting the involutive reductions. (See, however, the description of the option "L" below.)

The parametersvar andor d have the same meaning as in PollnvReduce

The advantage of this command is clearly the enormous speed up. (Note, you cannot interrupt this command from within Maple; you
have to kill the corresponding process "python” instead.)

If the letter "C" is given innode, then Poll nvReduceGI NV additionally returns the coefficients of the elements subtracted from the
input to obtain the normal form representative (remainder) with respect to the Janet basis.

If the letter "L" is present in mode, then Poll nvReduceGI NV doesnot check whether the given involutive basis B equals the one whick
was computed by the last call of InvolutiveBasisGINV. This option should speed up the repetitive use of Poll nvReduceGINV. Note
that, even if the computations of Poll nvReduceGINV rely upon the basis computed by the Python/C++ program, the parameter B must
match this basis, since certain data (e.g. the number of entries of the tuplesin the module case) are determined from B.

Possible left hand sides of the optional equationsopt are the strings "char”, "algext", "transext", "Name", "quiet”, "donotread",

If InvolutiveBasisGINV has been run before using the option "char"=¢ then this option must also be given to Poll nvReduceFast in
order to perform involutive reductionsin characteristic ¢ (cf. Example 3).

The right hand side of an equation "algext"=pinopt isexpected to be a univariate polynomial in an indeterminate  which does not
occur invar . The coefficients of p must be algebraic over the ground field in the sense that they are rational expressions in RoatOf
and indeterminates & used in previously given right hand sides of other equations "algext"=qinopt . This extends the ground field
(defined so far) by ¢ which has minimal polynomial p, i.e. every occurrence of { inL is subject to the relation p=0 (cf. Example 3).

Theright hand side of an equation "transext"=zinopt isexpected to be a name for an indeterminate. This extends the ground field
(defined so far) by anew transcendental element z

Using the option "GINV" of InvolutiveOptions, the command Poll nvReduceis replaced by Poll nvReduceGINV for the current Maple
session (which has the corresponding effect on al Maple procedures that call Poll nvReduce).

Theright hand side of an equation "Name"=sis expected to be a string. Poll nvReduceGI NV appendssto the default name for the
temporary file to which the input for ginv is written.

The right hand side of an equation "donotread"=sis expected to be a boolean value. If s equals true, then Poll nvReduceGI NV does not
read the result produced by the Python/C++ program and does not return a result.

Asright hand side of an equation "quiet"=t in opt , aboolean valuet is expected. The default valueisfalse. If t equalstrue, then no
intermediate output is produced on the screen by the Python/C++ program.



L » For more information about ginv, cf. http://invo.jinr.ru and http://wwwb.math.rwth-aachen.de/Janet.

B Examples:
C>wth(lnvolutive):

{ Example 1:

>var = [X,Y, z];
var =[xy, 7]

[ x+y+z, x*y+y*z+z*x, x*y*z-1],
L :=[x+y+zXy+yz+zxxyz—1]

[ .
[>L.

> B := I nvol utiveBasi s NV(L, var);
L B:=[x+y+zy +yz+Z, -1,y -y]
[ > Pol | nvReduced NV(z”~4, B, var);

z

r > Pol | nvReduced NV(x"2+y"2, B, var);
L -2

Example 2:

>var =[xy, z];

var =[xy, Z]

> L = [x+y+z=[1,0,0], x*y+y*z+z*x=[0,1,0], x*y*z-1=[0,0,1]];
L :=[x+y+z=[1,0,0],xy+yz+zx=[0,1,0],xyz-1=[0,0, 1]]
I nvol uti veBasi sG@ NV(L, var);
L B:=[x+y+2=[10,0] Y’ +yz+2’ =[y+2-1,0,2° - 1=[2, 2 1], y2’ - y=[yZ’, yz V]
r > Pol | nvReduced NV(z”4=[0,0,0], B, var);

1 T

> B :

z=[2, 24 ]
[ > Pol | nvReduced NV(z”~4, B, var);
z

Example 3:
[> var 1= [X,Y,z];
var =[xy, z]
[ > L o= [x+2*y+3*z, x*y+2*y*z+3*z*x, x*y*z-1];
L :=[x+2y+3zxy+2yz+3zxxyz—-1]
[ > B := I nvol utiveBasi s NV(L, var, "char"=7);
B:=[x+2y+3z Y+ 7%y +47° +5 7' +3y+27]

[ > Pol I nvReduced NV(x~3, B, var, "char"=7);
472+6

Bl See Also:




I nvolutive[PolK ernel] - return presentation of the kernel of a homomor phism between two finitely presented modules

over a polynomial ring

Calling Sequence:
PolKernel (M,A,N,var,K)

Parameters:
M - list (of lists of the same length) of polynomials or matrix with polynomial entries
A - list (of lists of the same length) of polynomials or matrix with polynomial entries
N - list (of lists of the same length) of polynomials or matrix with polynomial entries
var - list of variables of the polynomial ring
K - (optional) symbol

B Description:

» PolKernel returns a presentation of the kernel of the homomaorphism which is represented by A The homomorphism is understood as
amap from the modul e presented by Mto the module presented by N (i.e., the elements of Mand N are considered as elements of afree
module of tuples over the polynomial ring with indeterminatesvar of appropriate rank, and the domain and the range of the
homomorphism are the factor modules of the respective free modules modulo the submodules generated by the elements of Mresp. N).

« If Mand Nare lists, then the entries of Mand N are polynomialsin case of ideals, i.e. submodules of the free module of rank one, or lists

of polynomials of lengthm (resp. n), representing elements of the free module of m-tuples (resp. n-tuples) over the polynomial ring. If
Mor Nis amatrix, then the generators are extracted from the rows of Mresp. N

» The parameter A represents a homomorphism from the free module of m-tuples to the free module of n-tuples which maps the
submodule generated by Minto the submodule generated by N If Aisamatrix, then this homomorphism is given by multiplying A
from the right to mtuples.

If Aisalist, then it contains one polynomial invar in the case of ideals or alist of lists of polynomiasinvar of the same length. In
the latter case the number of lists must be equal to m, and the common length of these lists must be equal to n. If Aisamatrix, then the
number of rows must be equal to m, and the number of columns must be equal ton.

« Theresult of PolKernel isalist with four entries. Thefirst one defines the abstract generators of the constructed presentation of the
kernel. The second entry isalist of the relations imposed on the abstract generators of the presentation. Finaly, the third and the
fourth entry of the result give the Hilbert series (see PalHilbertSeries) resp. the Cartan characters (see PolCartanCharacter) of the
kernel.

The first entry of theresult isalist of equations, where the left hand sides are standard basis vectorsin their canonical order, i.e. lists
having exactly one entry equal to 1, the other entries being 0. The common length of these listsis the number of abstract generatorsin
the presentation to be defined, and the |eft hand side of the ith equation is theith standard basis vector. The right hand side of theith
equation isalist of polynomials representing aresidue class in the module presented by M It corresponds to theith abstract generator.
Hence, the right hand sides of the first entry provide a generating set for the kernel.

* The second entry of the result isalist of polynomialsif the constructed presentation involves only one abstract generator and a list of
lists of polynomials of the same length if there are more than one abstract generator. In the latter case, the common length of these
lists equals the number of abstract generators. If the constructed presentation involves only one abstract generator, then the
polynomialsin this second list of the result generate the annihilator of this single generator in the polynomial ring. More generaly, in
the case of several abstract generators, the lists of polynomials correspond to linear combinations of the abstract generators, where the
coefficient of theith generator is theith polynomial in thelist. All these linear combinations then generate al relations of the abstract
generators, i.e. generate the submoduleR of the free module Sover the polynomial ring with indeterminatesvar , where the rank of S

equals the number of abstract generators, such that the kernel isisomorphic to the factor module S/ R

The third entry of the result is the Hilbert series (according to standard degrees) of the kernel, see PalHilbertSeries
The fourth entry of the result isthe list of Cartan characters of the kernel as defined in PolCartanCharacter.




« If the optional fifth parameter Kis provided, then a matrix is formed whose rows are the generators given in the presentation of the
kernel, i.e. the right hand sides in the first entry of the output list, and this matrix is assigned to the symbol K.

Bl Examples:
C>wth(lnvolutive):
{ Example 1:
Let Rbe the univariate polynomial ring inxwith rational coefficients.
>var = [X];
var :=[X]
>M:= [x"2-1]; N:=[x-1];
M:=[x*-1]
N:=[x-1]
>A:=1]1];
A:=[1]

represents the homomorphism (a-> a) fromR/ (¢ — 1) to R/ (x— 1). A presentation of the kernel of thismap is:
> Pol Kernel (M A, N, var);

[[[1]=[x+1]], [x+ 1], 1,[O]]

Hence, the kernel is generated by one element which, multiplied by (x+ 1), gives zero inR/ (< - 1).

> Pol Kernel (M A, N, var, 'K);

[[[1]= [x+1]], [x+ 1], 1, [O]]

> eval m K);

[*+7]

Let again R be the univariate polynomial ring inxwith rational coefficients.
>var = [X];

var =[]

> M:

([x,1,1], [1,x1]];

M:=[[x1,1],[1x1]]

>A:=mtrix([[x,0,0], [0,%x,0], [0,0,%x]1);

represents the multiplication by xon the moduleR®/ < M >.
> Pol Kernel (M A, M var);

[[[1]=[0, 0,011, [1], 0, [O]]
The kernel of this homomorphism is zero.

Now we consider the map fromR® / < M > to the zero module which multiplies every element of R®/ <M > by x
>B:=mtrix([[x], [x], [x]]);

E
E
E
|
|
|
(
|

r > Pol Kernel (M B, [0], var, 'K);

S
E[l, 0]1=[-1,0,1],[0,1]=[-1,1,0]], [[0,x— 1]}, 2+ rs, [1]%

[ We obtain another presentation of the module R*/ < M >,
r > eval mK);




> eval MK & B);

. ¥

| PolExtn, PolParametrization, Pol Tarsion, PolSyzOp.




I nvolutive[PolL eftl nver se] - computeleft inverse of a polynomial matrix

Calling Sequence:
Pol L eftInverse(M,var)

Parameters:
M - matrix of polynomiasinvar or list of lists of the same length of polynomialsinvar
var - list of variables (of the polynomial ring)

B Description:

 PolLeftl nversecomputes (if possible) aleft inverse of the polynomial matrix M i.e. a polynomial matrix L such that the product of L
by Mis the identity matrix.

« Thefirst parameter Mis expected to be a matrix whose entries are polynomialsin the variablesvar or alist of lists of polynomiasin
var , where each list is of the same length. In the second case, Pol L eftl nverseforms a matrix by taking the listsin Mas rows and
computes aleft inverse of this matrix.

« |f noleft inverse of Mexists, PolLeftl nversereturns EALL.

« If aleft inverseL of Mexists, PolLeftl nversereturns such anL as amatrix if Mis amatrix, or returns the list of therows of L if Misalist
as explained above.

¢ Right inverses of polynomial matrices are computed by PolRightlnverse

Bl Examples:

C>wth(lnvolutive):

[ Inthefirst example we give the input as a matrix:
r>M:=matrix([[2*x"2, 4*x72-2, 0], [x"2, O, x"2-1], [-1, O, 0], [2*x"2, 2*x"2, x"2]]);
X 4x-2 0

r > Pol Leftlnverse(M [x]);
0 0 -1 0

1
5+x2 22 3% 2x2+2

L « 22X -1 3% 2¥%-1

C A list of lists of the same length of polynomialsis also accepted and interpreted as the list of rows of a matrix:

> M:= [[2*x"2, 4*x"2-2, 0], [x"2, 0, x*2-1], [-1, 0, 0], [2*x"2, 2*x"2, x"2]];:
L M:=[[2X% 4x° - 2,0],[X%, 0,x* - 1], [-1,0,0], [2x3, 24, ¥*]]

r > Pol Leftlnverse(M [x]);

0,0,-1,0], 1+><2,2x2,3x2,—2x2+2 [=¢3, 252 - 1,-3x%,2x% - 1]
ot ] :

Substitute yfor xin the second column of the matrix in the preceding example and consider y as a parameter, i.e. as element of the
L ground field:
r>M:=mtrix([[2*x"2, 4*y~2-2, 0], [x"2, O, x"2-1], [-1, O, O], [2*x"2, 2*y~2, x"2]]);




r > Pol Leftlnverse(M [x]);

y2
2y -1

0
2y* -1

X2
C2y?-1

1

L If Misconsidered as a polynomia matrix in the variablesxandy, then M has no |eft inverse:

[> Pol Left|nverse(M [x,Vy]);

See Also:

FAIL

InvalutiveBasis, Pol TahVar, PallnvReduce PolRightInverse, AddRhs



I nvolutive[ POIM inPoly] - minimal polynomial of an element of the residue classring

Calling Sequence:
PolMinPoly(m,B,var,mode)

Parameters:
m -  element of theresidue classring (apolynomia invar)
B - Janetbass
var - listof variables (of the polynomial ring)

mode - (optional) string or equation whose left hand side is a string

B Description:

« PolMinPoly returns the minimal polynomial for the residue class represented by min the residue class ring of the polynomial ring
modulo the ideal generated by Bin case its degree does not exceed a certain positive integer. By default thisinteger is 30.

var isthelist of variables of the polynomial ring. (PolMinPoly does not check whether B is a Janet basis with respect tovar .)

By default the result of PolMinPolyis apolynomial in the indeterminate A. The name of the indeterminate can be changed by the
option described below.

* Note, minimal polynomials are defined for polynomial rings only. So this command cannot be applied to modules.

The optional parameter mode may occur repeatedly. It may be equal to the string "S" or to an equation whose left hand side is one of
the following strings: "degree", "var", "subs".

 If mode equals"S", then PolMinPoly uses simplify instead of expandin the normal form procedure.

« If rode isgiven as equation "degree"=d, whered is a positive integer, then the upper bound for the degree of the minimal polynomial
to be computed is set tod.

« If rode equals "var'=z, wherezis a name for an indeterminate, then the resulting minimal polynomial is returned as a polynomial in
thevariablez

« If rode isthe equation "subs'=s then sis substituted for the indeterminate in the resulting minimal polynomial.

B Examples:
C>wth(lnvolutive):

Example 1:

[>var =[x, v];
var :=[x ]

r>L = [x"3-x"2, x*yr2, y~3];
L L:=DC =% xy? v
r>B := InvolutiveBasis(L, var);
i B:= [y’ xy2, X %, Y]
r > Pol M nPoly(y, B, var);
L A3
r > Pol M nPol y(x"2+y, B, var);
L A+ -2)1
Example 2:
[ >var = [x,Y]
var =[x Y]

( > L o= [xh2%y-yn2, xN2*yn2];



L L= [@y-y2 2y

r>B := InvolutiveBasis(L, var);

I | Bi= [’ Y- Y2 xy’]
> Fact or Modul eBasi s(var);
2
X
1+:(+x+xy+xy2 +y +y?
> Pol M nPol y(x*y, B, var);
L A2

Example 3:

[>var:=[a,b];
var :=[a, b]

r>1L2 :=[a*b-b, a+b"2];

L L2:=[ab-b,a+b?]

> B2 := InvolutiveBasis(L2, var);

L B2:=[a+b? ab-ba’-a]

[ > Fact or Modul eBasi s(var) ;

[1, b a]
r > Pol M nPoly(a, B2, var, "var"=X);
L X2-X
r > Pol M nPoly(a, B2, var, "subs"=X+Y);
L (X+Y)?=-X-Y
r > B3 := InvolutiveBasis([a"31], [a]);
L B3:=[a*]

r > Pol M nPol y(a, B3, ’\ga]);
Error, (in Involutive/Pol M nPoly) stopped cal cul ati on of mninmal polynom al since upper bound for the degree is
L reached.

r > PolMnPoly(a, B3, [a], "var"=lanbda, "degree"=40);
| )\31

See Also:



I nvol utive[PoI Par ametrization] - return amatrix whose rows gener ate a module whose syzygy module equals a given

module over a polynomial ring

Calling Sequence:
Pol Parametrization(L,var)

Parameters:

L - list (of lists of the same length) of polynomials or matrix with polynomial entries
var - list of variables of the polynomial ring

B Description:

 PolParametrization returns a polynomial matrix M such that the module generated by L over the polynomial ring with indeterminates
var isthe syzygy module of the module generated by the rows of M.

¢ Theentriesof L are polynomialsin case of an idedl, i. e. a submodule of the free module of rank one, or lists of polynomials of length

m, representing elements of the free module of m-tuples over the polynomial ring. If L is a matrix, then the generators are extracted
from the rows of L.

e Theresult of PolParametrization is amatrix M such that the product of the matrix composed of the rows of L by M is a zero matrix.

Moreover, the columns of M generate the kernel of the linear map of column vectors with polynomial entries which is defined by L. In
this sense, the result of Pol Parametrization parametrizes the kernel of this linear map.

Bl Examples:
C>wth(lnvolutive):
{Examplel:
[>var =[x, Y,2];
var =[xy, 7]
[> L1 :=[[x,y,2]];
L1:=[[x Y, 2]
r> L2 := Pol Paranetrization(Ll, var);
<z 0
L2:=0x 0 -z
L 0 x vy
r > L3 := Pol Parametrization(L2, var);
z
L3:=4HYy
L X
[ > eval m(L1 & L2);
[0 0Q
r > eval mL2 & L3);
0
0
L 0
Example 2:




[>var =[x, ¥];
var =[x ]
r>L:=[[y, x*y, 0], [y, 0, y*2]1;

L L :=[[y.xy, 0], [y, 0, y*]]
r > Pol Paranetrization(L, var);

Xy

y

L X

Bl See Also:

| PolExt1, PolExtn, PolTarsion, Parametrization




I nvolutive[ POIRepr es] - matrix representation with respect to a factor module basis

Calling Sequence:
PolRepres(m,B,var,FB,ord,mode)
Parameters:
m polynomial invar
B Janet basis
var list of variables (of the polynomial ring)
FB factor module basis given as list of monomials or generating function
ord (optional) change of monomial ordering

mode - (optional) string specifying options for the computation

B Description:

f

PolRepresreturns the matrix (in column convention) of the multiplication of mon the free module over the polynomial ring of
appropriate rank modulo the submodul e generated by the Janet basisB. The matrix is written with respect to the ground field basisFB
usually computed with the command FactorModuleBasis

Note, the ground field is allowed to be the field of complex numbers or the field of rational functions (in one or several variables) over
it.

If FBisalist, i.e. the factor module basisisfinite, then the resulting matrix has shapen x n, wherenis the length of the factor module
basis, and it has entriesin the ground field.

If FBis given as generating function, i.e. FBis the sum of the monomials according to a disjoint cone decomposition of the standard
monomials of the factor module, then an entry in thei-th row of the resulting matrix is a polynomial in the multiplicative variables for
thei-th cone of the factor module basis (in the order given by FactorModuleBasisvar , "C")). The number of rows and the number of
columns equal the number of conesin this case.

If the Janet basis B has been computed with respect to a monomial ordering different from the default one (seelnvolutiveBasis), then
the argument or d is expected to be the same as the one given to the previous call of InvolutiveBasis Otherwise leading monomials
might be determined incorrectly, resulting in an error message of PolRepreswhen the normal form of an mmultiple of an element of
FBis not expressible as linear combination in terms of FB (cf. Example 4 below).

The optional parameter mode may occur repeatedly. It may be equal to the string "S" or to the string "listlist".
If rode equals"S", then PolRepresusessimplify instead of expandin the normal form procedure.
If node equals "listlist", then the resulting matrix is returned as alistlist.

For more information about disjoint cone decompositions of the factor module, see W. Plesken, D. Robertz, "Janet’ s approach to
presentations and resolutions for polynomials and linear pdes’, Archiv der Mathematik, 84(1), 2005, 22-37.

Bl Examples:
C>wth(lnvolutive):
Example 1:
>var = [x,y];
var =[xyl
> L o= [xh2-2%y, x*yr2-yA2];
- L= 042y -]
> B := Invol utiveBasis(L, var);
1
8= -2y Sy o v
> FB : = Fact or Modul eBasi s(var);



> M : = Pol Repres(x,

> My : = Pol Repres(y,

> i nal g[ mi npol y] (M,

B, var,

B, var,

FB:=[1, ¥ % Y% xy]

FB) ;

<
x
1
N
[EnY

FB) ;

My .=

| anbda) ;

r > Pol M nPol y(y, B, var);

Example 2: Computations over afield of rational functions

[>var = [x,v];

0 O
0o 2
0 O
0O O
1 0
0 0
0 0
0 0
1 0
0 1
1
=52 3
2)\ +A
1
=52 3
2)\ +A
var =[x Y]

0

0

o

Li=[y®+y?+22 -1, y*+ 72 - 1]

var) ;

B:= [y + 722 - 1,5, (2 - 1) x+ xy?]

FB:=[1,y,x xy]

r>L = [y*x"2+y"2+z72-1, y"2+z"2-1];
- > B := I nvol utiveBasis(L,

[ > FB : = Fact or Modul eBasi s(var);

r > M := Pol Repres(x, B, var,

"> M := Pol Repres(y, B, var,

FB);
FB);

0 O

0 O

Example 3: Matrix representation with respect to an infinite basis

[ >var = [X,VY];

0

0

o



var :=[x ]
> L o= [xM2%y-Xx, X*yr2-y];

L :=[yx’ =% xy* = y]

> B := I nvol utiveBasis(L, var);
_ B:=[xy’ -y, y¥¥ - X
> FB : = Fact or Modul eBasi s(var);
1 X2
=TT+ T X+
FB: 1y 1-x X+Xy
> Fact or Mbdul eBasi s(var, "C');
[1, % xy, %]
> Pol Repres(x, B, var, FB);
40 0 0 0
El 0O 1 0
H0 0 0 0
50 1 0 x

\

Pol Repres(y, B, var, FB);

0 0 0 0]

Example 4: Using amonomial ordering which is not the default one

>var = [x,v];
var =[x y]

L:=[e+y2 X -y

> L o= [xh2+y"2, x"3-y];

> B :

I nvol utiveBasi s(L, var, 1);

Bi= [y +y ' +xy ¥ +y’]
> FB : = Fact or Modul eBasi s(var);

— A
FB—[]-,y:X,yznyaiy]
> Pol Repres(x, B, var, FB);
Error, (in Involutive/Pol Repres) the given vector space basis is not the factor nodul e basis for the residue class
nodul e under consideration.

> Pol Repres(x, B, var, FB, 1);

Example 5: Matrix representation with respect to an infinite basis of tuples

>var = [X,v];
var :=[x Y]
> L o= [[y*x"2+y"2+z72-1, x], [y, y*2+z72-1]];

L=y +y +Z 1K, [yy* + 2 - 1]]



1

y 1

0

0

0 0

0 O

o
o
0

X

V-2 +1

:

r> B := InvolutiveBasis(L, var);
L B:i=[ly Y’ +Z - 1] [yX+y* +Z -1 X]
r > FB : = Fact or Mbdul eBasi s(var);
FB'—sz X
L '_Hﬂ.—xi-l—yi-l—y’l—x+ 1-x
r > Fact or Modul eBasi s(var, "C');
L [[0, 11, [0,y], [1, 0], [x O], )¢, O]]
r > M := Pol Repres(x, B, var, FB);
Oox O
go X
Mx := ZO 0
H0 0
i Ho o
T > M := Pol Repres(y, B, var, FB);
22 +1
0
My = -y
0
L 0
See Also



I nvolutive[ PolResolution] - return freeresolution of a factor module of a free module over a polynomial ring

Calling Sequence:
PolResolution(L ,var,mode,tr)

Parameters:
L - list (or matrix) of generators of the submodule
var - list of variables (of the polynomial ring)
node - (optional) string specifying options for the computation and the type of information to be returned
tr - (optional) positiveinteger (truncate resolution to lengtht r)
Bl Description:

« PolResolution computes a free resolution of R"m/<L> by first computing the minimal Janet basis for <L>, say of k(1) elements. These
elements are given in form of amatrix representing a homomorphism RM(1) -> R"mwith cokernel RMm/<L>. It then computes a
generating set L(1) of the kernel of this homomorphism and proceeds with R*(1) andL(1) in the same way asit did with R"mand L. It
terminates once the kernel istrivial.

.

Asoptional third parameter a string consisting of letters"C", "D", "G", "M", "O", and "S" is accepted that does not contain "D" and
"M" at the same time.

« If mode containsthe letter "M", then the output is the list of matrices that were computed as kernels of the above homomorphisms (in
the reversed order they were constructed). Thisis the default mode. If nbde contains the letter "D", then the output is the list
containing lists of integers[[d, ,, ....d ], ..., [d, ;, ..., d, , ]], whered ;is the degree of the]-th generator (row in matrix) of thei-th free

: N : ny :

module in the free resolution.

Note, for matrices the row convention is used, i. e. R*misidentified with R 1 x m} and the matrices are multiplied to rows from the
right.

« If theletter "O" is present in node, minimal Groebner bases are computed instead of minimal Janet bases in each step.

« If node containsthe letter "G", then the first matrix (i.e. the last one in the output) is formed using the given generating setL, i.e. the
computation of a Janet basisis suppressed in the first step. If also the letter "C" is present innode, then the minimal Janet basisis till
computed in the first step and the first matrix is formed using the smaller generating set of L and its minimal Janet basis.

e If theletter "S" is present innode, the program uses simplify instead of expandin the normal form procedure. If the polynomialsin
theinput L contain nonrational coefficients, more precisely, if the ground field contains algebraic elements over the rational s (RootOf
), then simplifyis used instead of expand automatically.

« |f the optional parametert r is supplied, PolResolution stops after having computed t r kernels as described above.

» For more information about Janet bases and resolutions, see W. Plesken, D. Robertz, "Janet’ s approach to presentations and
resolutions for polynomials and linear pdes', Archiv der Mathematik, 84(1), 2005, 22-37.

B Examples:
C>wth(lnvolutive):

{ Example 1:

>var = [Xx,Y,z];
var:=[xy, Z]

L= [x+y+zXxy+yz+zxxyz—1]
> | nvol utiveBasi s(L, var);
[x+y+zy?+yz+2%, -1+2° y+2°)]
> Pol TabVar () ;

[ > L = [x+y+z, x*y+y*z+zr¥x, x*y*z-1];
|



[x+y+z[xV2,X
Y’ +yz+2,[* v, 2, ¥’
[-1+Z[*,*, 2], 2°]

L . [y+Zy[** 2. 2]
r > Pol Resol ution(L, var);

5 g o 1-22 2 y+Z
B ] X+y+z [H
R 9 o0 0 y -1
91 z+x 1 -~y 0 QO +yz+ 722
‘% éf y-22y A+ 2 x
& 22 wy-z 22 -1+Z2°8QH -1+
= 1 1-72 0 z+x 1
= = y+2°y
L 5 My’ -yz-722 xty+z 0 O
> Pol Resol ution(L, var, "D");
[ [[5,6],[5.4,5,4,3], [1,2 3,4]]
r > Pol Resol ution(L, var, "Q")
+yz+7* Xx-y-z 0 X+y+z
-1+7 xty+z ?-yz-7 0 1+ P -yz-ZHP tyztz
L “1+7 0 X-y-z -1+72°
[ > Pol Resol ution(L, var, "DO");
[[6],[3,5,4].[123]]
r>r := Pol Resolution(L, var, "G');
0 xyz-1 Xy-yz-z
x+y+z
-z ytz -1 y+yz+zx = X-y-z 0
r: y+YZ+2ZX
y yA+2-1 2 z+>§ Z2+y+1 zx-yz-7¢2  x+ty+z
é xyz—1

N VZ2+y+z 1-yz-yzZ? VY+yz+7?
> map(expand, evalm(r[1] & r[2])); map(expand, evalm(r[2] & r[3]));

éOOOé
0 0 O

0
0
0
L 0
Example 2:
[>var =[x, Y,2];
var =[xV, 7]
r>L :=[x"2,y"2,2"2];
L L:=Dé YA 2]
r > Pol Resol ution(L, var, "G');
S
yéizz 0 +f
A0 ¢ o0&
L %zz 0 —xzy%




r > Pol Resol ution(L, var, "G', 1);
0 Z H
Z 0 %
Y % 0 %
L 2 0 —xzy;

Bl See Also:
InvolutiveBasis Pol TabV ar, PollnvReduce Syzygies, SyzygyModule Pol ShorterResolution, Pol ShortestResolution, PolResolutionDim,
PalEulerChar.




I nvolutive[ PolResolutionDim] - return ranksof the free modulesin a freeresolution of a factor module of a free

module over a polynomial ring

Calling Sequence:
PolResolutionDim(L ,var,tr)

Parameters:

L - list (or matrix) of generators of the submodule
var - listof variables (of the polynomial ring)
tr - (optional) positiveinteger (truncate resolution to lengtht r)

B Description:

» PolResolutionDim returns the list of ranks of the free modules over the polynomial ring in the variablesvar occurring in the free
resolution constructed by PolResolution applied to L.

¢ Theranks of the free modules are computed from the number of non-multiplicative variables for the elementsin the Janet basis of L.
Therefore, in contrast to PolResolution, only one involutive basis computation has to be performed. The rank of the domain of thei-th
homomorphism computed by PolResolution (represented by the last buti-th matrix in its resulting list) equals the sum overj, of the
number of possible choices of i variables from the set of non-multiplicative variables of thej-th element of the Janet basis of L.

.

The entries of L are polynomialsin case of an ideal, i.e. a submodule of the free module of rank one, or lists of polynomials of length

m, representing elements of the free module of mtuples over the polynomial ring. If L is a matrix, then the generators are extracted
from the rows of L.

« |f the optional parametert r is supplied, PolResolutionDim returns only the list of ranks of the first (t r +1) free modules constructed
by PolResolution.

» Theresult of PolResolutionDimisalist of positive integers. The last integer in the resulting list equals 1 if L generates anideal in the
polynomial ring in the variablesvar ; otherwiseL generates a submodule of afree modules of tuples over this polynomial ring in
which case the last integer equals the length of these tuples. Fori greater than 1, the last buti-th entry in the result of
PolResolutionDim equals the rank of the domain of the (i — 1)-th homomorphism computed by PolResolution (represented by the last
but (i — 1)-th matrix in the result of PalResolution).

 For more information about Janet bases and resolutions, see W. Plesken, D. Robertz, "Janet’ s approach to presentations and
resolutions for polynomials and linear pdes’, Archiv der Mathematik, 84(1), 2005, 22-37.

Bl Examples:
C>wth(lnvolutive):

{ Example 1:

>var =[xy, z];

[ var =[xV, Z]
[ > L = [x+y+z, x*y+y*z+z*x, x*y*z-1];

L:=[x+y+zxy+yz+zxxyz—-1]
> | nvol utiveBasis(L, var);

- [x+y+z Yy +yz+7%, -1+2% y+2°y]
r > Pol TabVar ();

[X+y+2z[xy 2, X
Y +yz+2,[*,v.2,y’]
[1+Z[*,*, 2], Z°]

I - v+ 2y [ " 2.2
( > Pol Resol utionDin{L, var);




L [254,1]
[ > Pol Eul er Char (L, var);

0
r > Pol Resol ution(L, var);
s 0 o 1-22 722 y+7
= H O 0 y -1
1 z+x 1 -y 0 0Of
] é_ y-2y A+ 2 x
& 22 wy-z 22 1+72°8H
- 0 1-2° 0 z+x 1
L B By -yz-2 x+y+z 0 0

[ > Pol Resol utionDi m( L, var, 2);

! [5,4,1]
Example 2:
r > var @ = [x,y];
var :=[x V]
r>L = [[x*2-y,y*2,0],[x,y,x]1;
L o L= [ - vy, 0L, [x % Al
[ > Pol Resol utionDi n(L, var);
[1,3 3]
[ > Pol Eul er Char (L, var);
1
> Pol Resol ution(L, var);
XRy-yVx—y X -x
-1 X ), xy-y? X
y X

Bl See Also:
PolEulerChar.




I nvolutive[PolRightInver se] - computeright inverse of a polynomial matrix

Calling Sequence:
PolRightInverse(M,var)

Parameters:
M - matrix of polynomiasinvar or list of lists of the same length of polynomialsinvar
var - list of variables (of the polynomial ring)

B Description:

« PolRightl nverse computes (if possible) aright inverse of the polynomial matrix M i.e. a polynomial matrix R such that the product of
Mby Ris the identity matrix.

« Thefirst parameter Mis expected to be a matrix whose entries are polynomialsin the variablesvar or alist of lists of polynomiasin
var , where each list is of the same length. In the second case, PolRightl nverse forms a matrix by taking the listsin Mas rows and
computes aright inverse of this matrix.

« If noright inverse of Mexists, PolRightl nversereturns FAIL.

« If aright inverseR of Mexists, PolRightl nversereturns such anR as amatrix if Misamatrix, or returns the list of the rows of Rif Misa
list as explained above.

« Left inverses of polynomia matrices are computed by PolL eftinverse

B Examples:

C>wth(lnvolutive):

C Inthe first example we give the input as a matrix:

r>M:=mtrix([[2*x"2, x"2, -1, 2*x"2], [4*x"2-2, 0, 0O, 2*x”72], [0, x"2-1, O, x"2]]);
23 X 1 2%

M=@Ex¥-2 0 0 2%

r > Pol Ri ghtlnverse(M [x]);

0 2x¢ 2x-1

1 3% 3%

0 2x2+2 2x*-1
A list of lists of the same length of polynomialsis also accepted and interpreted as the list of rows of a matrix:

> M:= [[2*x"2, x72, -1, 2*x"2], [4*x72-2, 0, 0, 2*x72], [0, x"2-1, 0, x"2]];
L M= [[2X, %, -1, 2X°], [4X° - 2,0,0,2%%],[0,5% - 1, 0,°]]

r > Pol Ri ghtlnverse(M [x]);

%’_iﬂz’ _XZE[O,ZXZ, 2x°=1],[-1,3x%, 35, [0, 2X* + 2, 2x° - 1]%

Substitute yfor xin the second row of the matrix in the preceding example and consider y as a parameter, i.e. as element of the ground
L field:
r>M:=matrix([[2*x"2, x"2, -1, 2*x"2], [4*y~2-2, 0, 0, 2*y~2], [0, x*2-1, 0O, x"2]1);

m




2% X1 23

M=Hy -2 0 0 2y

L 0 x-1 0 ¥
r > Pol Ri ghtlnverse(M [x]);

01— Y _H

22y-1  2y’-14

0 0 -1 H

A X2 2 B

2y -1 2y?-1F

0 0 1 B

L If Misconsidered as a polynomial matrix in the variablesxandy, then M has no right inverse:
[ > Pol Ri ghtl nverse(M [x,y]);

FAIL

See Also:



I nvol utive[PoIShorter Resolution] - shorten (if possible) a freeresolution of afinitely presented module over a

polynomial ring

Calling Sequence:
Pol ShorterResol ution(F,var)

Parameters:

F - list of matrices whose entries are polynomiasinvar
var - list of variables (of the polynomial ring)

Bl Description:

« Given a(finite) free resolution of afinitely presented module over the polynomial ring in the variablesvar , Pol ShorterResolution
tries to construct a shorter free resolution of the same module. Thisis possible whenever the last homomorphism between free
modules in this free resolution admits aright inverse (see PolRightInverse).

If the length mof the free resolution given by Fis at least 3 and if the last morphism R between free modules given inF admits aright
inverse S, then a shorter free resolution is obtained by removing the last free module, augmenting the last but first morphismR, _,
with S, i.e replacingitby (R, _, S,), and replacing the last but second morphism R, _, by the transpose of (R,_, 0) in a compatible
way (note also that the last but second free module in the given free resolution must be adjusted).

If the length mof the free resolution given by F equals 2 and if the last morphism R, between free modules given inF admits aright
inverse S, then a presentation of the module resolved by F is obtained by removing the last free module and augmenting the last but
first morphisn R, with S,, i.e. by defining the presentation matrix (R, S)).

If the length mof the free resolution given by F isless than 2, then Pol Shorter Resolution returnsF.

Fisalist of matrices representing a free resolution of afinitely presented module over the polynomial ring in the variablesvar . Most
commonly, Fisthe result of PolResolution.

¢ Theresult of PolShorterResolution is of the same format asthe input F, i.e. alist representing a free resolution of the finitely
presented module, which is shorter than the given one or equals the given one.

« The procedure described above can be iterated using the command Pal ShartestResol ution.

¢ For more details, see A. Quadrat, D. Robertz, "Computation of bases of free modules over the Weyl algebras’, Journal of Symbolic
Computation 42 (11-12), 2007, pp. 1113-1141.

Bl Examples:
C>wth(lnvolutive):

{ Example:

L (seeJ.-F. Pommaret, Partial Differential Equations and Group Theory: New Perspectives for Applications Kluwer, 1994, p. 162)

[> var := [D1, D2, D3] ;
var :=[D1, D2 D3]

[> R :=[1,D1, D2, D3] ;
R:=[1,D1,D2 D3]

> F1 := Pol Resolution(R, var, "G');




F1:=gD1 -1 D3 -D2,

- > F2 : = Pol ShorterResol ution(F1, var);

0 0 D2 D3 0 O
1 D2 D3 0 O 0 -1
0O -1 0 D1 D2 O

-1 0 D1 0 -D3 O

MO T T T T T T T T ET T I T T T T T T III]

r>F3 := var);

1
0 D3 D2 -1 O

D1
D3 0 D1 O 0

D2
D2 D1 O 0 0

D3
0 0 -1 0 0

0
0 -1 0O 0 O

0
-1 0 0 0 0

0
0 0 0 D1 -1

0

r > F4 : = Pol ShorterResol ution(F3, var);

to 0 O -1 0 D1 D2 O

L 0 O -1 0 D1 0 D3 O
r > Pol ShorterResol uti on(F4, var);




p3 0 0 O -1 O 0

o -1 0 0 D2 D3 O

0 D1 D2 D3 0 O 0 -1

o 0O O -1 0 D1 D2

L o 0 -1 0 DL 0 -D3 O
[ Hence, it was possible to reduce the length of the free resolution represented by F1 in each step, finally arriving at a free resolution of
L length 1. These steps can be done at once by calling Pol ShortestResol ution:

r > F := Pol ShortestResol ution(F1, var);

0 0 0 0 0
0O 0 O o0 O
0 0 0 o -1
0O 0 0O -1 o0

-1 0 0 D2 D3

0O 0 -1 0 D1 D2 O

0O -1 0 D1 o
In fact, the module presented by Ris stably free because aright inverse of the presentation matrix obtained by PolShortestResolution

L admitsaright inverse:

r > Pol Ri ghtlnverse(F[1], var);

O 0 D3 D2 -1 0 O O

0O bz D1 0 O O -1 O

MMM E T T T TR T T T I I T T I I T I I TTa]

0 0 O 0 D1 -1 D3 D2

Bl See Also:
i . . . \uticn, PoiS o, \utionDim,
PolEulerChar.




I nvolutive][Pol ShortestResolution] - return ashortest freeresolution of afinitely presented module over a

polynomial ring

Calling Sequence:
Pol ShortestResol ution(F,var)

Parameters:

F - list of matrices whose entries are polynomiasinvar
var - list of variables (of the polynomial ring)

Bl Description:

« PolShortestFreeResolution iterates the application of PalSharterResolution to a (finite) free resolution of afinitely presented module
over the polynomial ring in the variablesvar and returns a free resolution of the same module which cannot be shortened in this way
anymore.

» Fiseither amatrix with polynomial entries or alist of matrices representing afree resolution of afinitely presented module over the
polynomial ring in the variablesvar . In thefirst case, afree resolution of the module presented by F is computed first. In the second
case, most commonly, F is the result of PolResolution. Then, in both cases, Pol ShorterResolution is applied repeatedly to the
resolution until PolSharterResolution does not change the resolution anymore.

« Theresult of PolShortestFreeResolution is alist representing a free resolution of the finitely presented module

¢ For more details, see A. Quadrat, D. Robertz, "Computation of bases of free modules over the Weyl algebras’, Journal of Symbolic
Computation 42 (11-12), 2007, pp. 1113-1141.

Bl Examples:
C>wth(lnvolutive):

{ Example:

L (seeJ.-F. Pommaret, Partial Differential Equations and Group Theory: New Perspectives for Applications Kluwer, 1994, p. 162)
[> var := [D1, D2, D3];
var :=[D1, D2 D3]
[> R :=[1,D1, D2, D3] ;
R:=[1,D1, D2 D3]
r>Fl := Pol Resol ution(R, var, "G');

-1 0 O D2 D3 O 1
1 D2 D3 0 O 0 D1
F1.=D1 -1 D3 D2,
0 -1 0 D1 D D2
-1 0 D1 0 D D3

© > F2 := Pol Shorter Resol uti on(F1, var);




0 0 D3 -D2
0 D3 0 -Di1
0 0 D2 D3 0 O
0 D2 D1 O
D1 b2 D3 0 0 0 -1
0O -1 0 D1 D2 O

-1 0 D1 0 -D3 O

{1 O D

© > F3 := Pol Shorter Resol uti on(F2, var);

0 D3 D2 -1 0 O

- > F4 : = Pol ShorterResol ution(F3, var);

2 0 0 0O O -1 0 O
w3 0 0 0 -1 0 0 O
F4.=
0 -1 0 0 D2 D3 0 O
0 D1 D2 D3 0 O 0 -1

1o 0 O -1 0 D1 D2 O

r > Pol Short er Resol uti on(F4, var);
1

D1
D2

D3




[ Hence, it was possible to reduce the length of the free resolution represented by F1 in each step, finally arriving at a free resolution of

L length 1. These steps can be done at once by calling Pol ShortestResol ution:
r > F := Pol ShortestResol ution(F1, var);

0O 0 O O o

-1 0 0 D2 -D3

0O 0 -1 0 D1 D2 O

0O -1 0 D1 o
In fact, the module presented by Ris stably free because aright inverse of the presentation matrix obtained by Pol ShortestResolution

L admitsaright inverse:
r > Pol Ri ghtlnverse(F[1], var);

O 0 D3 D2 -1 0 O O

o b2 D1 0 O O -1 O

10 D

0 0 O 0 D1 -1 D3 -D2

Bl See Also:
PolEulerChar.




I nvol UtiVE[PO|SUbFaC'[OI‘] - return presentation of a subfactor of afinitely presented module over a polynomial ring

Calling Sequence:
PolSubFactor(L1,L2,var,v)

Parameters:

L1 - list (of lists of the same length) of polynomials or matrix with polynomial entries

L2 - list (of lists of the same length) of polynomials or matrix with polynomial entries

var - list of variables of the polynomial ring

v - (optional) name of the indeterminate for the Hilbert series of the subfactor (default: ’s’)

B Description:

¢ PolSubFactor returns a presentation of the epimorphic image of the sum of the modules generated by L1 and L2 in the module
presented by L2. Thisis a subfactor module of the factor module given by the free module of m-tuples over the polynomial ring in
var modulo the submodule generated by L2, wheremis the common length of the listsresp. rowsinL1 and L2. In many situations
the module generated by L2 is a submodule of the module generated by L 1. Then Pol SubFactor returns a presentation of the module
generated by the residue classes represented by the entries of L1 in the module presented by L 2.

.

The entries of L1 and L2 are polynomialsin case of ideals, i.e. submodules of the free module of rank one, or lists of polynomials of
length m, representing elements of the free module of mtuples over the polynomial ring. In the latter case, thelistsinL1 and L2 must
be of the same length. If L1 or L2 isamatrix, then the generators are extracted from the rows of L1 resp. L2.

e Theresult of PolSubFactor isalist with four entries. The first one defines the abstract generators of the constructed presentation of
the subfactor module in terms of representatives of residue classes in the given subfactor module. The second entry isalist of the
relations imposed on the abstract generators of the presentation. Finally, the third and the fourth entry of the result give the Hilbert
series (see PolHilbertSeries) resp. the Cartan characters (see PolCartanCharacter) of the subfactor module.

The first entry of theresult isalist of equations, where the left hand sides are standard basis vectorsin their canonical order, i.e. lists
having exactly one entry equal to 1, the other entries being 0. The common length of these listsis the number of abstract generatorsin
the presentation to be defined, and the |eft hand side of the ith equation is theith standard basis vector. The right hand side of theith
equation gives arepresentative of the residue class in the subfactor module generated by the residue classes of the sum of the modules
generated by L1 and L2 in the factor module presented by L2 which corresponds to theith abstract generator. Hence, the subfactor
module is generated by the set of right hand sides in this first entry modulo the module generated by L2.

« The second entry of the result isalist of polynomialsif the constructed presentation involves only one abstract generator and alist of
lists of polynomials of the same length if there are more than one abstract generator. In the latter case, the common length of these
lists equals the number of abstract generators. If the constructed presentation involves only one abstract generator, then the
polynomialsin this second list of the result generate the annihilator of this single generator in the polynomial ring. More generally in
the case of several abstract generators, the lists of polynomials correspond to linear combinations of the abstract generators, where the
coefficient of theith generator is theith polynomial in thelist. All these linear combinations then generate all relations of the abstract
generators, i.e. generate the submoduleN of the free moduleM over the polynomial ring with indeterminatesvar , where the rank of M

equal s the number of abstract generators, such that the given subfactor module isisomorphic to the factor module M / N.

« Thethird entry of the result is the Hilbert series (according to standard degrees) of the given subfactor module, see PolHilbertSeries.

The optional fourth argument to Pol SubFactor selects the name of the indeterminate for the Hilbert series. The default nameis’s
which cannot be affected by asubs command.

» Thefourth entry of the result isthe list of Cartan characters of the given subfactor module as defined in PolCartanCharacter.

B Examples:
C>wth(lnvolutive):
[ > var = [x];
var := [x]

( > Pol SubFactor ([x], [x"2], var);



([[1]=[x]]. [x]. . [O]]
> Pol SubFactor ([ 1], [x], var);
[[[11=[11]. ¥, 1, [O]]

>var = [X,y];

var =[x Y]

> Pol SubFactor ([ [ x*3+y”3, x"*2]], [[x"4, 0], [0, x"4]], var);
4

E[l]: DC+Y°, ] [X*], 1+ 25+3s? +48° +4 13_ 2[4 O]E

[ > Pol SubFact or ([ x"3+y~2, x"2+1], [y"2, x"4], var, |anbda);
[[[1, 0] =[x}, [0, 1] = [x* + 1]1, [[% O1, [0, y°1, [¥*, O, [0, ¥* ¥, [-1, ], [0, y* °]], 2+ 3A + 2% +2% [0, O]]

Bl See Also:
InvolutiveBasis PallnvReduce PolHilbertSeries, Syzygies, PolResolution, PolK ernel, PolHom, PolHomHom, PalExt1, PalExtn,
| PolTaorsion, PolParametrization, PalSyzOp.




I nvol utive[ Pol SyZOp] - return amatrix whose rows generate the syzygy module of a finitely presented module over a
polynomial ring

Calling Sequence:
Pol SyzOp(L ,var)

Parameters:

L - list (of lists of the same length) of polynomials or matrix with polynomial entries
var - list of variables of the polynomial ring

Bl Description:

¢ PolSyzOp constructs a matrix whose rows generate the syzygy module of the module M presented by L (i.e., the elements of L are
considered as elements of a free module over the polynomial ring with indeterminatesvar of appropriate rank and M is the factor
module of this free module modulo the submodule that is generated by the elements of L). This matrix is constructed by computing
the beginning of afree resolution of M using PalResolution. For more information about syzygies cf. also Syzygies

* Theentries of L are polynomialsin case of anided, i. e. a submodule of the free module of rank one, or lists of polynomials of length

m, representing elements of the free module of m-tuples over the polynomia ring in the indeterminatesvar . If L isa matrix, then the
generators are extracted from the rows of L.

» Theresult of PolSyzOp is amatrix with polynomial entries such that the product of this matrix by the matrix whose rows are the
entriesinL isazero matrix.

¢ The name of the command Pol SyzOp is motivated by the corresponding command SyzOp in the package Janet.

Bl Examples:
C>wth(lnvolutive):
Example 1:
[>var =[x, ¥];
var =[x Y]
r>S:= Pol SyzQp([x, y], var);
| S=[¥ X
r>L=mtrix([[x], [y]]);
X
A
L y
[>evaln(S & L);
! [ 9
Example 2:
[>var =[xy, 2];
var =[xV, 7]
r>L1 c=mtrix([[x], [y], [2]]);
X
L1:=HY
| z
r> L2 := Pol SyzOp(L1, var);




L2=gz 0 X
7 0 -z vy
> Pol Syzp(L2, var);
z v X
[ >evalm(L2 & L1);
0
0
7 0

B See Also: SyzygyModule
oy . PolResolution, Pol Parametrization, PolHom, PolHomHom, PolExtl, PolExtn,
| PolTorsion, PolKernel, PolL eftinverse, PolRightlnverse




I nvol utive[PoITabVar] - display Janet’sdata, i. e. the generators, their leading monomials, multiplicative variables etc.

Calling Sequence:
Pol TabVar()

Parameters:
- - none (assumes that the involutive basis has been computed before)

B Description:

« PolTabVar displays the data constructed by InvolutiveBasis Therefore it is necessary to cal | nvolutiveBasisfirst. The data structure
isalist of lists each corresponding to an element of the Janet basis.

¢ Intheideal casethe entries of each list are the basis polynomial, the list of multiplicative / non-multiplicative variables and the
leading monomial. The variables occurring in the second entry are the multiplicative variables of the respective leading monomial.
Non-multiplicative variables are represented by "*'.

« Inthe module case thefirst entry isalist of polynomials representing an element of the free module of tuples over the polynomial
ring, the second entry indicates multiplicative and non-multiplicative variables as above, the third entry isalist with first entry the
leading monomial and second entry its position within the tuple.

Bl Examples:
C>wth(lnvolutive):
[> var = [X,Y,z];
var =[xy, 7]
[ > L o= [ x+y+z, x*y+y*z+z*x, x*y*z-1];
L= [x+y+zXxy+yz+zxxyz—1]
> Invol utiveBasis(L, var);
L [x+y+zy +yz+2,2°~1,2°y-y]
r > Pol TabVar () ;
[x+y+z[xyz,X
[y +yz+2,[* v 2 ]
[2-1,[**2 7%
L [Zsy—y,[*,*,z], Zsy]
Note some effects of the other monomial ordering:
> | nvol utiveBasi s(L, var, 1);

L [Z2-1,Z2y-y Y +yz+ 7% x+y+7]
r > Pol TabVar () ;

1M

[Z2-1,[** 2,2%
[Zy-y[** 2 2°Y]
Y +yz+2°,[*,y, 2, ¥]
[x+y+z[xy2,X

Note, right hand sides are displayed as well:
> L 1= [xty+tz=a, Xx*y+y*z+z*x=b, x*y*z-1=c];
L:=[x+y+z=axy+yz+zx=h xyz-1=d]

1 T

> | nvol utiveBasi s(L, var);

L [x+y+z=a Yy +yz+Z2=za+ya-b 2-1=72a-zb+c Zy-y=cy-bzy+az’y]
r > Pol TabVar () ;

[x+y+z=a[xVz,X
[y’ +yz+Z =za+ya-b,[*y,2,y]
[Z2-1=Za-zb+cg[*,*, 2], Z°]

L [Z’y-y=cy-bzy+az’y[** 2, 2°y]
For modules the output is slightly more involved:

m




r > InvolutiveBasis([[x"2-1, 0], [x*y, x*y], [0, y*2-1]], [x,VY]);
[[0,y* = 11, [xy, xy], [y>, %1, ¥ = 1,0, [y* = y; O], [0, X+ y* ]

[0y~ 11, [*y1. [y>. 21]
[[xy, xyl, [*, y], [xy; 11]
[y?, %°1 [x ¥, [, 211

[[x* - 1,01, [% Y], [x?, 11]

[y’ -y 0] [y [y’ 1]

L L [0, x+Y* X, [*, Y1, [y* % 2]]

See Also:

- > Pol TabVar () ;




I nvolutive[Pol Torsion] - return torsion submodule of a finitely presented module over a polynomial ring

Calling Sequence:
PolTorsion(L ,var,v)

Parameters:

L - list (of lists of the same length) of polynomials or matrix with polynomial entries
var - list of variables of the polynomial ring
v - (optiona) name of the indeterminate for the Hilbert series of the torsion submodule (default: 's')

Bl Description:

« PolTorsion constructs a presentation of the torsion submodule of the moduleM presented by L (i.e., the elements of L are considered
as elements of a free module over the polynomial ring with indeterminatesvar of appropriate rank and M is the factor module of this
free module modulo the submodule that is generated by the elements of L).

.

The entries of L are polynomials in case of an ideal, i.e. a submodule of the free module of rank one, or lists of polynomials of length
m, representing elements of the free module of mtuples over the polynomial ring. If L is a matrix, then the generators are extracted
from the rows of L.

e Theresult of PolTorsion isalist with four entries. The first one defines the abstract generators of the constructed presentation of the
torsion submodule in terms of representatives of residue classes in the given module. The second entry isalist of the relations
imposed on the abstract generators of the presentation. Finally, the third and the fourth entry of the result give the Hilbert series (see
PalHilbertSeries) resp. the Cartan characters (see PolCartanCharacter) of the torsion submodule.

The first entry of theresult isalist of equations, where the left hand sides are standard basis vectorsin their canonical order, i.e. lists
having exactly one entry equal to 1, the other entries being 0. The common length of these listsis the number of abstract generatorsin
the presentation to be defined, and the |eft hand side of the ith equation is theith standard basis vector. The right hand side of theith
equation gives arepresentative of the residue classin the torsion submodule which corresponds to theith abstract generator. Hence,
the torsion submodule is generated by the set of right hand sidesin thisfirst entry modulo L.

« The second entry of the result isalist of polynomialsif the constructed presentation involves only one abstract generator and alist of
lists of polynomials of the same length if there are more than one abstract generator. In the latter case, the common length of these
lists equals the number of abstract generators. If the constructed presentation involves only one abstract generator, then the
polynomialsin this second list of the result generate the annihilator of this single generator in the polynomial ring. More generally in
the case of several abstract generators, the lists of polynomials correspond to linear combinations of the abstract generators, where the
coefficient of theith generator is theith polynomial in thelist. All these linear combinations then generate all relations of the abstract
generators, i.e. generate the submoduleN of the free moduleM over the polynomial ring with indeterminatesvar , where the rank of M

equal s the number of abstract generators, such that the torsion submodule isisomorphic to the factor moduleM / N.

e Thethird entry of the result is the Hilbert series (according to standard degrees) of the torsion submodule, seePolHilbertSeries

The optional third argument to Pol Torsion selects the name of the indeterminate for the Hilbert series. The default nameis’s which
cannot be affected by asubs command.

« Thefourth entry of the result isthe list of Cartan characters of the torsion submodule as defined in PolCartanCharacter.

B Examples:
C>wth(lnvolutive):
{ Example 1:
[ > var = [x];
var :=[X]

[> L:=1[[x,1,1], [1,x,1]];
L:=[[x11][Lx1]]

[ > Pol Torsion(L, var);



L

Example 2:
[>var =[x, ¥];
r>L:=1[[y, x*y, 0], [y,

> Pol Torsion(L, var);

Example 3:

[>var =[x, v];

> L = [[y+x, x*y+1l, 0],

[ > Pol Torsion(L, var);

[ Thetorsion submoduleistrivial.

See Also:

[[[1] = [lr -1, O]], [X_ l]v 1 [O]]

[ Thetorsion submodule is generated by the residue class moduloL which is represented by [1, -1, 0], and this element is annihilated by
L x— 1 The dimension of the torsion submodule as a vector spaceis 1. Its Cartan character is 0.

var ;=[x y]

0, y*2]];

[x,

L :=[[y, xy, O], [; O, y*1]

s
E[L 0]=[10,y}.[0,1]=[1,x OI}. [{0. y1. [y, O1}. 2+ 27—, [2, O]E

The torsion submodule is generated by the residue classes modulo L which are represented by [1, O, y], [1, % 0], and these elements are

annihilated by y. The third entry of the result gives the Hilbert series of the torsion submodule, the fourth entry givesits Cartan
L characters. The indeterminate of the Hilbert series can be changed via the optional third argument:
> Pol Torsion(L, var, |anbda);

A
E[L 0]=[10,y}.[0,1]=[1,x OI}, [[0. 1. [y O1}. 2+ 273 [2, 0]%

var =[x ]
0, y"2]];

L :=[[y+x xy+1,0],[x 0,y*]]

[[[11=[0,0,0]],[1], 0,[0,0]]



I nvolutive] PolWeightedHilbertSeries] - Hilbert seriesof the module generated by the last InvolutiveBasis
command (weighted version)

Calling Sequence:
PolWeightedHilbertSeries(degrees,v)

Parameters:

degrees - list of variables associated with degrees (weights)
v - (optional) name of the indeterminate (default's’)

B Description:

¢ The command PolWeightedHilbertSeriesis completely analogous to PolHilbertSerieswith the only exception that the standard
grading of the module of mtuples over the polynomial ring is replaced by the grading defined by degr ees. The information is
derived from the last call of InvolutiveBasis

* The parameter degr ees isalist of the form [<variablel>=<degreel>, <variable2>=<degree2>, ...]. In thisway adegreeis assigned
to each variable. In the modul e case degrees other than 0 can also be assigned to the standard basis vectors of the free module. The
above syntax is therefore extended to [x=d,, ..., x=d,, 1=g, ..., m=g], cf. alsolnvolutiveBads

« The special case where all degrees are equal to 1 yields the same result (in a different expansion) asPolHilbertSeries.
¢ The default name of the indeterminateis’s'. It will not be affected by asubs command.

Bl Examples:
C>wth(lnvolutive):
[>var =[xy, 2];
=[xv7
[ > L = [ x*y+y*z+z*x, x*y*z-1];
L :=[xy+yz+zx xyz—1]

> | nvol utiveBasi s(L, var);

L [Xy+yz+zxyZ?+ Z2x+ 1,22y +y+7]

r > Pol Wi ght edHi | bert Seri es([x=1,y=1,z=1], |anbda);

2A 2A2 1 )8

i 1-AT%1-A T 1-a T 1
r>taylor(% |anbda, 7);

L 1+3A+5A% +6A3 +6A* +6A° +6A° +O(\")
> Pol Hi | bert Seri es(l anbda);

4

1+3A+5N2+67° +6 A
1-A

The next examples deals with graded modules:

> var = [x=2,y=1, 1=0, 2=3] ;

=[x=2y=11=0,2=3]
> L o= [[xM2*yn2, x*y], [x"3-y"6,y"3]];
L L= D¢y, xyl, [ = ¥2 ¥

r > Invol utiveBasis(L, var);

L (D4 Y2 xyL D4 =Y, VLI, 1/5+x Y1 Y2,y = ¥° 5, [0, xy” +yx* —y° 1]
r > Pol Wi ght edHi | bert Seri es(var, |anbda)

1 T

}\ll )\9 )\7 )\5 )\3
7 6 5 4 3 2 9 8
| 2ATH2N 3N H3NTH2N7 207 AN +1 HAT HA +1_)\2 Ty 1% 1o 1oa
r > F := Factor Mbdul eBasi s(var);

R St e et -

1x1y1y1yly

( > subs([ x=I anbda”2, y=lanbda], F[1]+F[2]*|anbda”3);




2N
+2)\°
+3A°
+3)\4
A +223 +2)2
+A +
1 +\°
+\8
23

HA°
)\6
}\4
)\2
1

Hi-a2”
1-AT1-a "
1-A 1
“A

:



I nvolutive[ PolZer 0Sets] - return the coefficients by which the involutive basis algorithm had to divide

Calling Sequence:
PolZeroSets()

Parameters:
- - none (assumes that the involutive basis has been computed before)

B Description:

¢ PolZeroSetsreturnsthe list of elements which are transcendental over the ground field of the last involutive basis computation and by
which some polynomials had to be divided during this last involutive basis computation. This command is useful when applying
InvolutiveBasisto a module defined over a polynomial ring whose coefficient domain consists of rational functions.

« Theresult of PolZeroSetsis alist which does not contain multiple entries, i.e. each (transcendental) denominator of the last involutive
basis computation occurs only once in the resulting list.

* The purpose of PolZeroSetsis similar to that of ZeroSetsin the.Janet package.

B Example:
C>wth(lnvolutive):

{ Example 1:

>var = [x,y];

[ var :=[x ]
[ > L = [a*x*y-a, Xx-b*y];
L :=[axy—a x—hy]

> | nvol utiveBasi s(L, var);
—1+y2bE
i E‘_by' b
r > Pol TabVar ();
[x=by [x ¥ X
1+y?b
| b 7[*1y]lyZE
[ > Pol Zer oSets();
[ab]
r > Invol utiveBasis(L, var, "N');
L [x-by,-1+y?b]
[ > Pol Zer oSet s();
! [a]
Example 2:
[> var = [X,Y,z];
var =[xy, 7]

r>L :=[x"2-y, x*y-a*z];
L L= -y, xy-az]
> Invol utiveBasis(L, var);

L [Fazx+y? xy—az X’ -]
> Pol TabVar () ;

[-azx+y [*, .2 ]
[xy-az[*,y Z],xy]
D¢ -y [x ¥ 2, %]

f > Pol Zer oSets();



L L [a]

See Also:



Involutive[Repres] - expresspolynomialsin a given vector space basis of polynomials

Calling Sequence:
Repres(L,B,var)

Parameters:
L - list of polynomials
B - vector space basis as list of polynomials
var - listof variables (of the polynomial ring)

B Description:

* Represexpresses the polynomialsin L as linear combinations of the polynomialsin B, if possible. More precisely, the i-th column of
the result represents thei-th polynomial in L with respect to the vector space basisB, if it lies in the vector space spanned by B.

» Theresult isamatrix whose number of rows equals the number of elementsin B and whose number of columns equal's the number of
elementsinL.

« If apolynomial inL does not liein the vector space which is generated by B, then the corresponding column in the result is the zero
column.

» Represcomputes an involutive basis of B with right hand sides, appliesPollnvReduceto L and uses the right hand sides to express the
polynomialsin L in terms of B, if the remainder returned by Poll nvReduceis zero.

Bl Examples:

C>wth(lnvolutive):

[> var = [X,Y,z,u];
var =[xy, z U]

r>B := [x"2+y"2, x*z+y*u, z"2+u"2];

L B:= [+ Y xz+yu, 22 + u?]

r > Repres(B, B, var);

1 0 O
0 1 Q0
L 0 0 1

1
\%

Repres(B, B, [x,V]);

+ +

Z+u? 2+u? 2+u?
r>0L := [0, x"2+y"h2, 2*x*z+2*y*u, X 2+y"2+z72+u”2];
L L:=[0,5%+y? 2xz+2yu,x* +y? + 7% +U?]
r > Repres(L, B, var);

0
0
A X2 uy zX
52 4 12

0 1 0 1
0O 0 2 O
L 0 0 0 1

r>L :=[anr2, x"2+y"2+z"2];
L L:=[a%x2+y? +7%]

r > Repres(L, B, var);




0 O

[ Theinput need not consist of homogeneous polynomials:
r>B = [x"2+1, y"2+z-1];

L B:i=[x+1y+z-1]
r>L = [x"2+4y"2+z, 1/ 7*x"2+1/7];

2
x> 1
= +y2+ 4+
L L: %2 Z‘7 7

> Repres(L, B, [X,y,2]);

See Also;
PolRepres coeffmatrix, gethas

:



I nvolutive[Stats] - display statistics of last application of InvolutiveBasis

Calling Sequence:
Stats()

Parameters:
- - none (assumes that InvolutiveBasis has been called before)

B Description:
« Statsdisplays statistical information about the last run of I nvolutiveBasis

Bl Examples:
C>wth(lnvolutive):
[ > L o= [ X1+X2+X3+X4, X1*X2+X2*¥X3+X3* X4+x4* X1, XL1*¥X2*X3+X2* X3* X4+X3* X4* X 1+x4* x1* X2,
x1*x2*x3*x4- 1] ;
L L= [X1+X2+X3 + x4, X1 X2+ X2 X3 + X3 X4 + X4 X1, XL X2 X3 + X2 X3 X4 + X3 X4 XL + X4 X1 X2, X1 X2 X3 x4 — 1]
r > InvolutiveBasis(L, [x1,x2,x3,x4]);
[X1+ X2 + X3 + x4, X42 + 2X4X2 + 22, x2X3? + X32 X4 — x4? X2 — x4, X3? x4? — x4° x2 — x4* + x2x3x4? +x3x4°% -1,
L X4% X2+ x4° — x4 —x2, x4% x3% + x4° x3% — X3 — x4, x4* x3% + X2 X3 - X4 X2 + X3 X4 — 2 X4?]
r > Stats();
Number of polynomialsin involutive basis, 7
Use of normal form procedure 30
Number of reductions performed, 38
Number of transfers 0
Use of first criterion, 6
Use of second criterion, 0
Use of third criterion, O
Use of fourth criterion, O
L L The involutive basisis also a reduced Groebner basis.
See Also:

i . \LiveOnti



I nvolutive[ Substitute] - eliminate variablesfrom a system of polynomial equations by substitution

Calling Sequence:
Substitute(L,var)

Parameters:

L - list of polynomialsinvar
var - list of variables

B Description:

« Subsgtitute tries to eliminate variables from a system of polynomial equationsinvar by solving some of these equations for variables
that occur only linearly and substituting the resulting expressions for these variables into the remaining equations.

Substitute applies repeatedly InvolutivePreprocessto the list L of |eft hand sides of the polynomial equations. Aslong as
InvolutivePreprocessfinds avariableinvar that occurs only linearly in some left hand side, the resulting expression for this variable
is substituted into the other left hand sidesin L and InvolutivePreprocessis applied again to the resulting list of left hand sides with
one variable less and so on.

Itis convenient to apply Substitute to L prior to the run of InvolutiveBasisin order to reduce the complexity of the involutive basis
computation.

L isthelist of left hand sides of the polynomial equationsp, =0, ...,p,=0.

var isalist specifying the variables occurring in the system of polynomial equations.

« Theresult of Substituteis alist with three entries. The first entry isthe list of |eft hand sides of a system of polynomial equations
which has finally been obtained by the substitution process described above, i.e. the last list of left hand sides which could not be
solved linearly for any variable anymore. The second entry of the result isthe list of equations which have been used to eliminate
variables from the system of polynomial equations. The third entry of the result isthe list of remaining variables, i.e. the complement
invar of the set of variables occurring as left hand sides in the second entry of the result.

Bl Examples:
C>wth(lnvolutive):

{ Example 1:

[>var =[x, Y,2];
var =[xV, 7]
r>L:=[x*y, 3*x-y"2-z, yr2-z72];

L L:=[xy,3x-y* -z y* - 7]
> Invol utivePreprocess(L, var);

| it 4

> Substitute(L, var);
7 e S VR

Example 2:

[>var =[x, Y,2];
var =[xV, 7]

r>L :=[x*y-z, z-x*y+y-1, x"2-y~2];

L L:=[xy-zz-xy+y-1~y]

> Substitute(L, var);

L [[X - 1], [z= xy, y=1], [X]




[ > | nvol utivePreprocess(L, var);
[z=xy,z=xy-y+1]

r> L2 := subs(z=x*y, L);
L L2:=[0,y-1,5% - y?*]
[ > I nvol utivePreprocess(L2, [x,Y]);
ly=1]
> subs(y=1, L2);
L [0,0,x*-1]
Example 3:

[> var 1= [X,Y,z];

var :=[x Y, z]
[ > | nvol utiveOptions("char", 2);

0

> L = [x*y, 3*x-y"r2*zr2, yr2-2z72];

L L =[xy, 3x-y* 22 y* - 7%]
r > Invol utivePreprocess(L, var);

I [x=y? 7]
> Substitute(L, var);
i o [y’ 2,y + 2] x=y* 2], [y 2]
[ > | nvol utiveOptions("char", 3);
2

r>L = [x*y, 3*x-y"r2*z~r2, yn2-z72];

L L =[xy, 3x-y* 2%, y* - 7°]
[ > | nvol utivePreprocess(L, var);
[]

> Substitute(L, var);
| [Ixy. 3x-y* 2, y* =221, [ 1, [x ¥ 2]

See Also;




I nvol utive[SubmoduIeBasi S] - return avector space basisfor the module generated by the last computed Janet basis
asagenerating function

Calling Sequence:
SubmoduleBasis(var,subs)

Parameters:

var

list of variables (of the polynomial ring)

subs -  (optional) equation "subs'=expression

B Description:

C

|

[
E

SubmoduleBasis returns a generating function which enumerates (the leading monomials of) a vector space basis for the submodule
of the free module over the polynomial ring generated by the Janet basis of the last call of InvolutiveBasis

A term of the form m/((1x))...(1-x)) g in the result enumerates all (tuples of) polynomials which are obtained as multiples of the
unique Janet basis element with leading monomial m(in thei-th entry, in case of tuples) by polynomialsinx,, ..., x,. Here mstands for &
monomial in the indeterminatesvar and g for thei-th standard basis vector of the free module of tuples. Note that if the rank of this
free module is greater than one, the result of SubmoduleBasisis accordingly alist of generating functions.

The result of SubmoduleBasis can aso be easily read off from the information given by PolTabVar. It isjust the sum of the leading
monomials of the Janet basis, each multiplied by the geometric series 1/((1-)111)...(1-@), where { )ill, )i’k} is the corresponding set of

multiplicative variables for the respective Janet basis element.
var isexpected to be thelist of variables of the polynomial ring that was given as parameter to | nvolutiveBasis before.

If an optional equation "subs'=expression is provided, then SubmoduleBasis substitutes ' expression’ for all variablesinvar inthe
result (cf. Example 1 below).

For more information about generalized Hilbert series, see W. Plesken, D. Rabertz, "Janet’ s approach to presentations and resolutions
for polynomials and linear pdes’, Archiv der Mathematik, 84(1), 2005, 22-37.

B Examples:

> wi th(lnvolutive):
Example 1:
>var = [x,y];

var :=[x ]
> | nvol utiveBasis([x,y], var);

[: x|

> Pol TabVar () ;

[y v

[x[xyl ¥
> Subnodul eBasi s(var);

A X

—
1-y (1-X(1-y)
> Subnodul eBasi s(var, "subs"=t);

> Subnodul eHi | bert Series("var"=t);

> taylor(% t=0, 20);
2t+3t2 +4t3 +5t* +61° +71% +8t7 +9t® +10t° +111t° +12t1 #3112 440 45t 46t 47t® 48t 49t® PO



L t19+o(t20)
[ > Subnodul eHi | bert Functi on(0);
0
[ > Subnodul eHi | bert Function(1);
2
r > Subnodul eHi | bert Function("");
Dnm(Ms) =0, for s <1
LDmMs) = 1+s, for s >= 1
> Subnodul eHi | bert Pol ynom al (s);
1+s
Example 2:
[> var 1= [X,Y,z];
var =[xy, 2]

s> L T = [X*y+X*Z, X*y"Z*Z, X/\2*Z];
L L := [xy+xz xy*z X Z]
I nvol utiveBasi s(L, var);

L [xy+xz X2z yx%, Z° ]
Pol TabVar () ;

1
\

1
\Y

[xy+xz[*,y2],xy]

[¥*z[x* 2,¥Z]

[y, [x ¥ 2, yX]
L [Z2x[*,* 2], 22X
r > Subnodul eBasi s(var) ;

Xy Xz yX Zx

i 1-y1-2 " 1-01-2 @-01-ya-2 1-z
Subrodul eH | bert Series(t);

1
\%

t2 t3 t3 t4
+ + +
L 1-1* @-t*> @-t°* 1-t
r>taylor(% t=0, 20);
2+ 43 +9t* +24t° +201° +27t7 +351% +441t° +54t1° +65t1 +77t? 490t +04t* +4119t"° 4135t 452tY 470t

L +189t% + O(t®)

r > Subnodul eHi | bert Function("");
Dnm(Ms) =0, for s <2
DmM2) =1
DmMM3) =4
L DmMMs) = -1+1/2*s+1/2*s"2, for s >= 4
r > Subnodul eHi | bert Pol ynomi al (s);
1 1 1,
-1+7s+7
i 2572°
Example 3:
[>var =[x, Y,2];
var =[xy, 7]

r>L:=[[x*2,0], [xy, z]];
i - L:= [, 0], [x-y. 2]
I nvol uti veBasi s(L, var);

L [x- %2}, [y>, -yz-x2,[0,X Z]]
Pol TabVar () ;

1
\%

1
\

[xX=Y 2L, [x %2l [% 1]]
[y, yz—x2z],[*,y, 2], [y", 1]]

L [[0,X 2, [x 2, [¥* 2 2]]
> Subnodul eBasi s(var) ;
H ¥ X Xz E

L Hi-y -2 " @-0a-y-2' -0 -y -2




T

> Subnodul eBasi s(var, "subs"=t);

gt t t® E
+
Hi-v7 " @-v° @-1?
> Subnodul eHi | bert Series("var"=t);
t2 t t3
+ +
1-9* (@-9* @-t°

>taylor(% t=0, 20);
t+4t2+9t3 +16t* +251° +36t° +49t7 +64t% +81t° +100t° +121t' +144t12 4169t +#196t¥ 225t 956t° £89

17 + 324128 + 361t%° + O(t¥)
> Subnodul eHi | bert Function(0);

> Subnodul eHi | bert Function(1);

=0, for s <1
1
4
snh2, for s >= 3

ubm)(]ul eHi | bert Pol ynom al (s);



I nvol utive[SubmoduIeDimensi on] - return the dimension of the module gener ated by the last computed Janet basis

Calling Sequence:
SubmoduleDimension()

Parameters:
- - none (assumes that the involutive basis has been computed before)

B Description:

¢ SubmoduleDimension returns the degree of the filtered Hilbert polynomia (asin SubmoduleHP) of the filtration of the factor module
for which a presentation was computed by the last call of InvolutiveBasis as explained in SubmoduleHilbertSeries

« Note, SubmoduleDimension()-1 equals the degree of SubmoduleHilbertPolynomial().

Bl Examples:
C>wth(lnvolutive):

{ Example 1:

[> var = [X,Y,z];
var =[xV, 7]
[ > L o= [ x*y+y*z+z*x, x*y*z-1];
L :=[xy+yz+zx xyz—1]
> Invol utiveBasis(L, var);
L [Xy+yz+zxyZ°+ 2 x+1, 2y +y+7]
r > Pol TabVar () ;
[xy+yz+2zx[xY,Z], xy]
[yZ+Z2x+1,[x*, 2], 2>X]
L (2 +y+2[* 2. 2 Y]
[ > Subnodul eDi mensi on() ;

3
r > Subnodul eHP() ;
25 1
| —Es+('353+4+s2
r > Subnodul eHi | bert Pol ynomi al () ;
1..8
| 25 +23—5
Example 2:
>var = [x,v];
var :=[x Y]

>L:=[[x,y,2], [y, z,x]];
L:=[[xy2.[vzX]

[y zX,[xy 2]

[ > | nvol utiveBasi s(L, var);
[ > Subnodul eDi mensi on();

2
> Subnodul eHP() ;
s+¢?
[ > Subnodul eHi | bert Pol ynoni al () ;
2s

B See Also:






I nvol utive[SubmoduIeHiIbertFunction] - computethe graded Hilbert function for the module gener ated by the
last computed Janet basis

Calling Sequence:

Submodul eHilbertFunction(p)
SubmoduleHilbertFunction()

Parameters:
p - " " (empty string) or natural number
Bl Description:

e Let Z q\/ be the Hilbert series as discussed in SubmoduleHilbertSeries Then SubmoduleHilbertFunction( p) returnsq) incasep is
i=0
anatural number and prints the functions - d, in casep isthe empty string.

¢ SubmoduleHF, which is a summed up version of the present command and refers to the filtration rather than to the induced grading,
must not be confused with SubmoduleHilbertFunction.

¢ SubmoduleHilbertFunction() returns a function expecting one parameter p which computes SubmoduleHilbertFunction( p).

Bl Examples:

C>wth(lnvolutive):
{ Example 1:
[> var = [x,Y];

var =[x y]
[ > I nvol utiveBasis([x,y], var);

[y: X]

r > Pol TabVar ();

I [*,y1. Y]
L [x [x yI. ]
> Subnodul eHi | bert Series("var"=t);

t t

—+

L 1-t (1-1)?

r>taylor(% t=0, 20);

2t+3t2 +4t3 +5t% +61° +7t° +8t7 +9t% +10t° +11t° +12t™ #1312 414" 15t 46t A7t 48t 49t® R0
t19+0(t20)

Subrodul eHi | bert Function("");

mMMs) =0, for s <1

mMs) = 1+s, for s >= 1

Subnodul eHi | bert Function(1);

>
Di
Di
>

> Subnodul eHi | bert Function(9);
10

L B e
N

Example 2:

[>var =[x, Y, 2];
var =[xy, 7]

r>L = [x*y+x*z, x*y"r2*z, x"2*z];

L L = [xy+xz xy*z X* 7]

r > Invol utiveBasi s(L, var);

L [xy+xz X2z, Y32, Z° X




r > Pol TabVar ();
[xy+xz[* 2], xy]
[Xz[x* 2,¥7

[y, [x Y. 2], yX]
(2% [*,* 2,2
r > Subnodul eHi | bert Series(t);
t2 t3 t3 t*
+ + +
L 1-1* @-t*> @-t°* 1-t
r>taylor(% t=0, 20);
2+ 43 +9t* +141t° +20t° +27t7 +351° +44t° +54t t 477t t 104t 4119t 435t t t
24483+ 9t +141t5 +2018 +27t7 +351% +441t° +54t%° 465t +77t2 490t +104t* +4119t"° 4135t 4s52tY 470t

L +189t% + O(t®)

brnodul eHi | bert Function("");
0, for s <2
1

n wN»
~

M =
M2) =

M3) =4

Ms) = -1+41/2*s+1/2*s"2, for s >= 4
ubnodul eHi | bert Functi on(5)

[ 14

Example 3:

Su
i
i
i
i
Si

vV OoooovVv

3

[>var =[x, Y,2];

=[xy
r>L o= [[x2,0], [x-y, z]];

L:=[D¢ 0], [x- v 2]

1
\

I nvol uti veBasi s(L, var);

L [[x-Y. 2], [y?, -yz-x2], [0, 7]
Pol TabVar () ;

1
\Y

[[x-v2], [x v 2], [x 1]]
[, ~yz-x2L,[*, % 2, [y", 1]

L [[0,X 7], [x . 2], [¥* 2 2]]
> Subnodul eHi | bert Series("var"=t);

t? t i
+ +
a-v* @-v* @-u

r>taylor(% t=0, 20);
t+4t2+9t3 +16t* +251° +36t% +49t” +64t% +81t° +100t° +121t" +144t? 169t 196t 225t° ©56t1% £89
L t +324%° + 361" + O(t*°)

=0, for s <1
1

- i
=sn2, for s >= 3
ubnodul eHi | bert Functi on(8);



I nvolutive] SubmoduleHilber tPolynomial] - graded Hilbert polynomial for the module generated by the last
computed Janet basis

Calling Sequence:

Submodul eHilbertPolynomial (p)
Submodul eHilbertPolynomial ()

Parameters:
p - natural number or name of an indeterminate

B Description:

e Let Z q\/ be the Hilbert series as discussed in SubmoduleHilbertSeries Then SubmoduleHilbertPolynomial ( p) returnsdp in casep
i=0

isanatural number greater than or equal to the maximal (standard) degree of the elementsin the Janet basis computed by the last call

of LnvalutiveBasis. If p isthe name of an indeterminate, then the Hilbert polynomial in p is returned. The information is derived from

the last call of InvolutiveBasis Note, this same information can be extracted from the command SubmoduleHilbertFunction.

¢ SubmoduleHP, which is a summed up version of the present command and refers to the filtration rather than to the induced grading,
must not be confused with SubmoduleHilbertPolynomial.

« SubmoduleHilbertPolynomial() returns the graded Hilbert polynomial of the module of the leading terms of the module for which an
involutive basis has been computed last by InvolutiveBasis

* Asoptiona parameter aname p for the indeterminate of the Hilbert polynomia can be given. The default name of the indeterminate is
's'. 1t will not be affected by a subs command.

Bl Examples:
C>wth(lnvolutive):
{ Example 1:
[> var = [x,y];
. . =[xV
[ > I nvol utiveBasis([x,y], var);
[y x|

r > Pol TabVar () ;

[y [ Y1, Y1
L [x[x 11
> Subnodul eHi | bert Series("var"=t);

t t

—+

L 1-t (1-1)?

r>taylor(% t=0, 20);
2t+3t2 +4t3 +5t* +6t° +71% +8t7 +9t% +10t° +11t° +12t #3112 440 45t 46t® 47t® 48t 49t® R0
| l9+o(t20)

Example 2:

r> Subrmdul eHi | bert Function("");
DmMs) =0, for s <1

L DmMs) = 1+4s, for s >= 1
[ > Subrmdul eHi | bert Pol ynomi al (s);

1+s
[ > Subnodul eHi | bert Pol ynom al (1) ;

2
[ > Subnodul eHi | bert Pol ynomi al (9);

10



L
[> var = [X,Y,z];
=[xy
r>L = [x*y+x*z, x*y"r2*z, x"2*z];
L L := [xy+xz xy*z X* 7]
> | nvol utiveBasi s(L, var);
L [Xy+xz Xz Y32, Z° X
r > Pol TabVar ();
[xy+xz[*, 2], xy]
Xz [x* 2,52
[yx® [x v 2, yX]
L [Z2x[*,*,2], 22X
r > Subnodul eHi | bert Series(t);
t2 t3 t3 t*
L (1—02+(1—02+(1—03+1—t
r>taylor(% t=0, 20);
?2+43+9t* +1415 +201° +27t7 +351% +441° +54t%° +65tM +77t" 490t" +104t™ 419t 435t 452t 470t

L +189t% + O(t®)

r > Subnodul eHi | bert Function("");
Dm(Ms) =0, for s <2
DmMM2) =1
DmMM3) =4
L DmMs) = -1+1/2*s+1/2*s"2, for s >= 4
r > Subnodul eHi | bert Pol ynomi al (s);
Y
i T25758
[ > Subnodul eHi | bert Pol ynomi al (5);
14
Example 3:
[> var = [X,Y,z];
=[xy

r>L:=[[x"2,0], [xy, z]];
i o L:= (DX, 0], [x-y. 2]
I nvol uti veBasi s(L, var);

L [x- %2}, [y, -yz-x2,[0,X Z]]
Pol TabVar () ;

1
\

1
\

[[x-v2l, [x v 2 [x 1]]
(Y2, yz=-x2, [* v 2], [y" 1]

L [[0,X 2], [x y: 2], [¥* 2, 2]]
> Subnodul eHi | bert Series("var"=t);

t2 t t

L (1—t)2+(1—t)3+(1—t)3

r>taylor(% t=0, 20);

t+4t2+9t3 +16t* +25t° +36t° +49t7 +64t° +81t° +100tX° +121tM +144t12 +169t" #1961 225t 56t 289
L t17 + 324118 + 361t%° + O(t¥)

r > Subnodul eHi | bert Function("");
DmMs) =0, for s <1
DmM1) =1
DmMM2) = 4
L DmMs) =s?2, for s >= 3
r > Subnodul eHi | bert Pol ynomi al (s);
2
L S
[ > Subnodul eHi | bert Pol ynoni al ( 8);
64

FSeeAIso:






I nvol utive[SubmoduIeHiIbertSeries] - Hilbert series of the module generated by the last computed Janet basis

Calling Sequence:
SubmoduleHilbertSeries(v)

Parameters:
v - (optional) name of the indeterminate (default: ’s’)

Bl Description:

« SubmoduleHilbertSeries returns a generating function counting - according to the standard degrees - the leading monomials of the
module M generated by the Janet basis produced by the last call of InvolutiveBasis

« The free module of mtuples over the polynomial ring is graded by the standard grading (maximal degree of the components) and the
submodule of the leading monomials of M inherits a grading from this graded free module. Note, this submodule, and therefore also
its Hilbert series, depends on the term order chosen in the call of InvolutiveBasis SubmoduleHilbertSeries returns the Hilbert series
of the submodule of leading monomials of M.

» The output is the corresponding Hilbert series Z d V', where the d are the dimensions of the homogeneous components of the
i=0
module of leading monomials of M.

¢ The default name of the indeterminatev is’s'. It cannot be affected by asubs command.

* Note, if one has assigned non-standard degrees to the variables or to the standard basis vectors, the command
SubmoduleHilbertSeries will proceed from the leading terms computed by InvolutiveBasis but then reassign the degrees 1 for the
variables and O for the basis vectors.

Bl Examples:

C>wth(lnvolutive):
{ Example 1:
[> var = [x,y];

var =[x y]
[ > | nvol utiveBasis([x,y], var);

[v: x|

r > Pol TabVar ();

v [*. ¥y
L x[xyl ¥
r > Subnodul eBasi s(var) ;

¥ X

—
L 1-y (1-X(1-y)
> Subnodul eBasi s(var, "subs"=t);

> Subnodul eHi | bert Series("var"=t);

r>taylor(% t=0, 20);
2t+3t2 +4t3 +5t% +61° +7t% +8t7 +9t% +10t° +11t° +12t #1312 148 45t 46t® 47t 48t 49t £O
L t19+O(t20)

[ > Subnodul eHi | bert Function(0);

o




[ > Subnodul eHi | bert Function(1);

> Subnodul eHi | bert Function("");
Dnm(Ms) =0, for s <1

LDmMs) = 1+s, for s >= 1
> S

Example 2:

[>var =[x, Y, 2];

1
\

I nvol uti veBasi s(L, var);

1
\

Pol TabVar () ;

> Subnodul eBasi s(var);
Xy

r>0L := [x*y+x*z, x*y"r2*z, x"2*z];

1+s

var =[xy, z]
L := [xy+xz xy*z X Z]
[xy+xz Xz yx2, Z° X

[xy+xz[*,y, 2], xy]
[Xz[x* 2,¥7

[yx% [x v 2, yX]
[Z2%[** 2, 22X

X2z yX

2

X

1
\Y

Subrodul eH | bert Series(t);

r > Subnodul eHi | bert Function("");
Dnm(Ms) =0, for s <2
DmM2) =1
DmMM3) =4
L DmMs) = -1+1/2*s+1/2*s"2, for s >= 4
r > Subnodul eHi | bert Pol ynomi al (s);
Example 3:

[>var =[x, Y,2];

r>L:=[[x*2,0], [xy, z]];

1
\%

I nvol uti veBasi s(L, var);

1
\

Pol TabVar () ;

1
\%

Subrodul eBasi s(var);

H ¥

t? t3 t3

t4

-t @-n2 - 1t

Ry
1+-s+~
25758

var:=[xy, 7]

L:=[D¢ 0] [x- v 2]

[[x- .2}, [y, yz—x2], [0, 2]]

[xX=Y 2L, [x %2l [% 1]]

(Y2, vyz=-x2, [*, ¥ 2}, [y" 1]

[[0,%* 2], [x ¥, 2], ¥ 7 2]]

X

Xz

+ + +
L (1-y)1-20 (1-x(1-20 (1-x1-yl1-2 1-z

1
\%

Subnodul eBasi s(var, "subs"=t);

1
\

Subnodul eHi | bert Series("var"=t);

g t t t®
Hi-12 " @-v @-1?

t? t t3

:

-2 @-n° -

L Hi-ya-2 " a-»a-ya-2 (1—X)(1—y)(1—2)%



> taylor(% t=0, 20);
t+4t2+9t3 +16t* +251° +361% +49t” +64t% +81t° +100t° +121t1 +144t? +4169t2 196t 225t° 956t1° £89

¥ + 32418 + 361t + Ot%)
> Subnodul eHi | bert Functi on(0);

ub ul eH | bert Function("");

i 0, for s <1
i 1

[ > Subnodul eHi | bert Function(1);
d
LiE

d

I\)Hlﬁg
~——

M
M
M
i m(M

sh2, for s >= 3
ul eH | bert Pol ynomi al (s);

w

vV OooooV
a~d

[ =17)]

ub




I nvol utive[Su bmoduleH F] - computethefiltered Hilbert function for the module generated by the last computed Janet
basis

Calling Sequence:

SubmoduleHF(p)
SubmoduleHF()

Parameters:
p - " " (empty string) or natural number

Bl Description:

* p
e Let Z q\/ be the Hilbert series as discussed in SubmoduleHilbertSeries Then SubmoduleHF( p) returns Z d for natural numbersp
i=0 i=0
and prints the corresponding function in case p is the empty string.

» SubmoduleHilbertFunction, of which the present command is a summed up version and which refers to the induced grading rather
than to the filtration, must not be confused with SubmoduleH F ().

» SubmoduleHF() returns a function expecting one parameter p which computes SubmoduleHF( p).

Bl Examples:

C>wth(lnvolutive):
{ Example 1:
[> var = [x,y];

var =[x Y]
[ > | nvol utiveBasis([x,y], var);

[y: X]

r > Pol TabVar () ;

v [*.y1 Y]
L (% [ Y1, X]
> Subnodul eHi | bert Series("var"=t);

t t

4+

L 1-t (1-1)?

r>taylor(% t=0, 20);
2t+3t2 +4t3 +5t* +6t° +7t% +8t7 +91® +101° +11t1° +12t1 +13t2 4148 #5t 46t A7t!® 48tY 49t¥® 20

r> Subrgodul eHF("");

s >= 1: 3/2*s+1/2%sA2
> Subnodul eHF(1);

> Subnodul eHF( 2) ;

ubnodul eHi | bert Function("");
s) =0, for s <1
s) = 1+s, for s >= 1

ubnodul eHi | bert Function(1);

wiA3w
z=

> Subnodul eHi | bert Functi on(2);

Example 2:

A e T e e B e N S e
N



T

1

[

>var = [X,Y,z];
var =[xy, z]
> L o= [ x*y+x*z, x*yr2*z, xM2*z];
L := [xy+xz xy*z ¥* 7]
> | nvol utiveBasi s(L, var);
[xy+xz X2z, Y32, Z° X
> Pol TabVar () ;
[xy+xz[*,yz],xy]
Xz[x* 2,7
[y, [% ¥ 2], yx°]
[Zx[** 2,2°X
> Subnodul eHi | bert Series(t);
t? t2 t2 t*

-2 @-n2 - -t

>taylor(% t=0, 20);
2+ 413 +9t* + 2415 +20t% +27t7 +35t% +441t° +54t° +65t1 +77t12 490t 104t +19t" 4135t 452tY 470t

+189t%° + O(t®)

> Subnodul eHF("") ;
s <2:0
s =21
s =35
s >= 4: 1/2*s™2-2/3*s-2+1/6*s"3
> Subnodul eHF(5) ;

28
> Subnodul eHF( 6) ;

48
> Subnodul eHi | bert Function("");
DmMs) =0, for s <2
DmM2) =1
DmM3) = 4
Dim(Ms) = -1+1/2*s+1/2*s"2, for s >= 4
> Subnodul eHi | bert Functi on(5);

14
> Subnodul eHi | bert Functi on(6);

20
Example 3:
>var = [Xx,Y,z];

var :=[x Y, Z]

>L :=[[x*2,0], [x-y, z]];
L :=[[x% 0], [x-y: 2]

\%

I nvol uti veBasi s(L, var);

[[x- .2}, [y, yz—x2], [0, Z]]

\%

Pol TabVar () ;
[([x-¥.2 [x Y2, [x 1]]
[y, yz=x2), [*,%, 2, [y*, 1]]
[[0.¢2), [x ¥ 2, ¥z 2]]

\%

Subrmodul eHi | bert Series("var"=t);
t? t t3
+ +
1-v° @-t° @-t°

> taylor(% t=0, 20);
t+4t2+9t3 +16t* +251° +36t° +49t7 +64t% +81t° +100t° +121t" #1441 469t +4196tY 225t 956t° £89

Y + 32418 + 361t + Ot®)

ubnmodul eHF(" ") ;
1:
1
2

>
S
S
S
S
>

Subrodul eHF( 3) ;



14
> Subnodul eHF(4);

30

ubnodul eHi | bert Function("");
0, for s <1

1

4

=sn2, for s >= 3

[ ubnodul eHi | bert Functi on(3);
9

[ > Subnodul eHi | bert Function(4);

> S
i
i
rT(
n(
S

M
M
M
M

VNP ®0
———
L

vV oooovV

16

Bl See Also:
i . sl il is < . Series Su lemilt | ial, < . ion,
| SubmoduleHP, FactorModuleBasis, PolHilbertSeries, PolHF.




I nvol utive[SubmoduIeH P] - computethefiltered Hilbert polynomial for the module generated by the last computed
Janet basis

Calling Sequence:

SubmoduleHP(p)
SubmoduleHP()

Parameters:
p - natural number or name of an indeterminate

Bl Description:

* p
e Let Z q\/ be the Hilbert series as discussed in SubmoduleHilbertSeries Then SubmoduleHP( p) returnsz d for natural numbersp

i=0 i=0

greater than or equal to the maximal (standard) degree of the elementsin the Janet basis computed by the last call of LnvolutiveBasis,
and the corresponding polynomial inp inducing this function in casep is an indeterminate. Note, all thisinformation can also be
extracted from the command SubmoduleHFE.

¢ SubmoduleHP() returns the above polynomial with “s” as the default name of the indeterminate. “s” cannot be affected by asubs
command.

» SubmoduleHilbertPolynomial, of which the present command is a summed up version and which refers to the induced grading rather
than to the filtration, must not be confused with SubmoduleH P().

B Examples:

C>wth(lnvolutive):
{ Example 1:
[> var := [X,Vy];

var =[x Y]
[ > | nvol utiveBasis([x,y], var);

X

r > Pol TabVar () ;

[y Y
L [x[xyl ¥
> Subnodul eHi | bert Series("var"=t);

t t

—+

L 1-t (1-1)?

r>taylor(% t=0, 20);

2t+3t2+4t3 +5t* +6t° +7t° +8t7 +9t® +10t° +11t%° +12t #3112 4420 a5t 46t® 47t® 48t 49t® po
t19+0(t20)

> Subnodul eHP(s) ;

3 1
| S+ 3
[ > Subnodul eHP(1);
2
[ > Subnodul eHP(2);
5
[ > Subnodul eHi | bert Pol ynoni al (s);
1+s
[ > Subnodul eHi | bert Pol ynom al (1) ;
2
( > Subnodul eHi | bert Pol ynomi al (2);



L 3
{ Example 2:
[>var =[x, Y,2];
var =[xV, 7]
r>L := [x*y+x*z, x*yn2*z, x"2*z];

L L := [xy+xz xy*z X Z]
> Invol utiveBasis(L, var);
L [Xy+xz Xz yX, Z° X
r > Pol TabVar () ;
[xy+xz[*,y 2], xy]
Xz[x* 2,x7
Y%, [% ¥ 2, y*°]
L [Z2%[* * 2, 22X
r > Subnodul eHi | bert Series(t);
t2 t3 t3 4
+ + +
L (1-12 @-1)* @a-t® 1-t
r>taylor(% t=0, 20);
2+ 483 +9t* +14° +20t° +27t7 +351t% +44t% +54t1° +65t™ +77t™ 490t #1041 4119t 435t 452tY 470t
L +189t™ + O(t®)
r > Subnodul eHP(s);

2 1 1

, Bt s
[ > Subnodul eHP(9) ;
154
[ > Subnodul eHP(10) ;
208
> Subnodul eHi | bert Pol ynom al (s);
N
A+3s+47s
[ > Subnodul eHi | bert Pol ynomi al (9);
44
[ > Subnodul eHi | bert Pol ynom al (10);
54
Example 3:
[> var 1= [x,y, z];
var:=[xy,7]

r>L:=[[x*2,0], [xy, z]];
i o L= [, 0], [x-y. 2]
I nvol uti veBasi s(L, var);

] [x-¥ 2L, [y>, -yz—x2), [0, X 2]]
Pol TabVar () ;

1
\%

1
v

[[x=¥ 2], [x v 2, [x 1]]
(Y2, yz=-x2, [* . 2}, [y" 1]

L [[0,X* 2], [x Y, 2], [¥* 2 2]]
> Subnodul eHi | bert Series("var"=t);

t? t t®
+ +
L a-v* @-u* @-od
r>taylor(% t=0, 20);
t+4t2+9t3 +16t* +251° +361% +49t” +64t% +81t° +100t° +121t1 +144t? 169t 196t 225t° 56t1% £89

L 1 + 32418 + 361t + Ot%)
[ > Subnodul eHP(s);




1 1 1
| 25 *65*5"
[ > Subnodul eHP( 3) ;
14
[ > Subnodul eHP(4) ;
30
[ > Subnodul eHi | bert Pol ynomi al (s);
2
S
[ > Subnodul eHi | bert Pol ynom al (3);
9
[ > Subnodul eHi | bert Pol ynomi al (4);
L 16
B See Also:
Lt . st ul . . . I leHilt | ial, . ion
| SubmoduleHF, FactorModuleBasis, PolHilbertSeries PolHP.



I nvol utive[S}/zygies] - return generating set for the syzygies of afinite generating set for a module over a polynomial ring

Calling Sequence:
Syzygies(L,var,ord,mode)

Parameters:

L
var
ord

list of generators of the submodule with right hand sides
list of variables (of the polynomial ring)
(optional) change of monomial ordering

mode - (optional) string"'S", usesimplify instead of expand internally

B Description:

Syzygiesreturns the list of expressions which occurred as right hand sides corresponding to zero left hand side during computation of
the last call of InvolutiveBasis or during the reduction of the original generators and non-multiplicative prolongations of the Janet
basis elements. Note, L has to be the same asin the last call of I nvolutiveBasisand must be given with right hand sides naming the
generators. generator=name.

The expressions in the output list can be interpreted as necessary conditions to be satisfied by the right hand sides for solvability of the
inhomogeneous system of algebraic equations with the given left hand sides.

In terms of modules, Syzygiesconstructs the syzygies among the generators L of the module.

In general, the result of Syzygiesis not a Janet basis for the syzygies of L. The command SyzygyModulereturns a Janet basis for the
syzygies.

The parametersvar and or d have the same meaning as in InvolutiveBasis In particular one has the possibility viavar to work with
other than the standard degrees for the variables and basis vectors, provided one has done that aready in LnvolutiveBasis

If thestring "S" is given as parameter node, the program uses simplify instead of expandin the normal form procedure. If the
polynomialsin theinput L contain nonrational coefficients, more precisely, if the ground field contains algebraic elements over the
rational s (RoatOf), then simplifyis used instead of expand automatically.

Bl Examples:
C>wth(lnvolutive):
Example 1:
>var = [x,Y];

var :=[x ]
> L = [x"2=a, x*y-x=b, y~"2=c];
L:=[¥=axy-x=hy* =]

> | nvol utiveBasis(L, var);

[x=-b-yb+xgy’ =]
> Syzygi es(L, var);

[xc+y?b-yxc xb+xyb-x2c+a y?b+y*b-y?*xc+xc]
Substituting the standard basis vectors for a and b yiel ds the matrix of the homomorphism RN 3x1} -> R 3x1} whose image consists
of the relations among the generatorsin L:
> Ls := expand(subs([a=[1,0,0], b=[0,1,0], c¢c=[0,0,1]], [-c*Xx*y+b*y"2+c*X,
a- C*x"N2+b*y*x+b*x, Cc*Xx-c*x*y~2+b*y"3+b*yn2]));
Ls:=[[0,y?, xy+X], [1, xy+x ], [0,Y° + Y2, x= y* K]
>s := linalg[transpose] (matrix(Ls));
0 1 0

s=H Y  xytx y+y

xy+x K X-y



[>si mplify(linalg[multiply]([x*"2 , x*y-x , y*2],s));

[0,0,0]
[ Note, the third column of sis redundant.
Example 2:
[> var = [x,Y];
var =[x Y]

[>L:=[[x*2,0=100], [0,y]=[0,1,0], [x"2,y]=[0,0,1]];

- _ _ L:=[[x*,0]=[1,0,0], [0,y]=[0, 1, 0], [x, y]=[0, 0, 1]]
> InvolutiveBasis(L, var);

- , [[0,y1=[0,1,0], [, 0] =[1,0,0]]

[ > Syzygi es(L, var);

[[‘11 _17 1]]

Example 3:

[> var = [x,y];
var =[x Y]
r>L = [x"2+4y"2-1=a, x+y-1l=b, x"2-y~*2=c];
L:=pC+y*-1=ax+y-1=bxX*-y*=(]
> | nvol utiveBasi s(L, var);
[1=xb+ (b-2c)y-2y*b+2xyb +c +b —2a]

> Syzygi es(L, var);

[-Cb+(-b-c+2a)x’ +(ctb-2a)y* +xy’b +(-b+20)yx* +(b-20)y® +c +2x°y’b 2x°yb +2y*xb 2y*b,
(-c+2a)x+(Bc+2a)y-hx? +(3b+20)y* +2yxc-2x°yb +2y*b +2b +c —2a, b+ xb+(b-2c)y +(-b-c+2a) X
+(8b-c+2a)y? +2xyb—xy?b +(-b+2c)yx* +(-b+2c)y® +b —a +c 2x°y*b 2x°yb 2y*xb #2y*b,
xb+(b+2c-2a)y+(2b-20c)y? +2xy*b -2y*b +a —b,

(c+b-2a)x+ (-b+c)y+bx% +y*b-2yxc-2xy*b +2x%yb —b +a —]

Bl See Also:

| PolResolution, PolResolutionDim, PolEulerChar.




I nvol utive[S}/zygyM odule] - return Janet basis of syzygy module of a gener ating set of a module over a polynomial ring

Calling Sequence:
SyzygyModule(L ,var,ord,mode,rel)

Parameters:

L
var
ord

list (or matrix) of generators of the submodule
list of variables (of the polynomial ring)
(optional) change of monomial ordering

mode - (optional) string specifying options for the computation

rel

(optional) equation "mod" = list of generators of a submodule

Bl Description:

C

[

:

SyzygyM odule returns the minimal Janet basis of the syzygy module of the generating set L of a submodule of the free module of
tuples of polynomialsinvar with respect to acertain ordering. If the optional parameterr el is specified, then the entries of L are
interpreted as representatives of residue classes modul o the submodule generated by the right hand sideof r el .

The entries of L are polynomialsin case of anidedl, i. e. a submodule of the free module of rank one, or lists of polynomials of length
m, representing elements of the free module of m-tuples over the polynomial ring. If L is a matrix, then the generators are extracted
from therows of L. If the optional parameterr el ispresent, then the right hand sideinr el is expected to contain polynomialsinvar
or lists of polynomials of length maccording to the entriesinL.

The parametersvar , or d and have the same meaning as inlnvolutiveBasis
The fourth argument node isastring consisting of letters"N" or "S".

If the letter "N" is present in npbde, leading coefficients in the Janet basis of the syzygy module are not normalized to 1 (cf. also

If the letter "S" is present in node, the program uses simplify instead of expandin the normal form procedure. If the polynomialsin
the input L contain nonrational coefficients, more precisdly, if the ground field contains algebraic elements over the rationals (RaotOf
), then simplify is used instead of expand automatically.

By means of the command LnvalutiveOptions one can also choose between two implementations of SyzygyModule "Maple" and
o)

Bl Examples:
> with(lnvolutive):
Example 1:
>var = [X,v];
var =[x y]
> L1 := [x"2, x*y-Xx, y"2];
L1:= [, xy—-x Y]

> SyzygyModul e(L1, var);
[[_y+ 1x 0]: [O, _y2, Xy—= X], [_y21 0, Xz]]

Janet basis of syzygy module with respect to "position over term" ordering:
> SyzygyModul e(L1, var, 2);

[0, 2, ~xy+x], [1, xy+ X %]
Example 2: A sample calculation for modules over the polynomial ring Q[X,y]:

>var = [x,v];

var :=[x Y]
> L2 :=[[x"2,0], [0,y], [x"2,y]1;



L L2:=[[X%, 0], [0, y1, X%, V1]
[ > SyzygyModul e(L2, var);
[[11 1v _1]]

Example 3: Syzygies of a generating set of residue classes of afactor module

[>var = [x,v];
var =[x y]
r>R:

[[x"3,0], [0,x"3]];
R:=[[x 0], [0,x*]]
r>L3 :=[[x"2,0], [0,y], [x"2,y]];
L3:=[[X, 0], [0, ¥}, D¢, Y]]
SyzygyModul e(L3, var, "nod"=R);
S:=[[1,1,-1],[0,x =, [0, 0,x%]]

r>S:

Pol I nvReduce([x, 0,0], S, var);

[ —
v

[0,0,0]

Example 4: The next example deals with nonrational coefficients:

> al i as(onega=Root Of (a”2+a+l, a));
I, w
> sinplify(onega”2);
-1-w
> L4 : = [ x+onega*y+onega’t2*z, x*y+y*z+z*x, x*y*z] ;
L4 = [x+ wy+w?®z Xy+yz+2zx XyZ]

T

> SyzygyModul e(L4, [Xx,Yy,2]);
[[Xy+YyzZ+2zX X-wy+Z+zw, 0], [yZ? + XZ%, Z(X+ Wy -z —zw), X + WYy -z —~zw)], [0, Xyz Xy - Yz —zX],
VA yzw(zw+y), w(2yz+ 2 w+y* +2yzw)]]
[ > map(a->simplify(evalm([a] & vector(L4))), %;
[[C1, [0}, [0}, [O]]

Bl See Also:
7Syzyg¥MgduLeEastEolRmunmnEdRmanDJmEolEuLerQhaL




I nvolutive] SyzygyM oduleFast] - return Janet basis of syzygy module of a generating set of amodule over a

polynomial ring (C++ version)

Calling Sequence:
SyzygyModuleFast(L ,var,ord,mode)

Parameters:

L
var
ord

list (or matrix) of generators of the submodule
list of variables (of the polynomial ring)
(optional) change of polynomial ordering (see below)

mode - (optional) sequence of equations specifying options for the computation

B Description:

C

|

SyzygyM oduleFast computes the minimal Janet basis of the syzygy module of the generating set L of a submoduleM of the free
module of tuples of polynomiasinvar with respect to a certain ordering by using the C++ version of the command LnvolutiveBasis
(cf. InvolutiveBasisFast). Up to now, only the algorithm for the degree reverse lexicographical ordering (i.e., or d is2 or 4) is
implemented in C++.

All parameters to SyzygyModuleFast have the same meaning as in SyzygyMaodule

The advantage of this command is clearly the enormous speed up. (Note, you cannot interrupt this command from within Maple; you
have to kill the process"JB" instead.)

If an equation with left hand side "mod" occursinnode, then itsright hand side is expected to be alist of generators of a submodule
N of the module M generated by L. In this case, the given generators are internally appended to L, the Janet basis of syzygies for the
extended list is computed, but the terms in syzygies which correspond to coefficients for the generators of N are neglected. In this
way, aJanet basis for the syzygy module of the factor module M / N is obtained. See also Example 3 below.

The right hand side of an equation "denom"=bin node is expected to be either true or false. The default valueisfase. If bequalstrue,
then the C++ program collects all coefficients by which it divides during the computation of the involutive basis (these arise either as
contents of polynomials treated by the algorithm or as leading coefficients in the result before normalizing) together with the
coefficients that occur in some denominator of theinput L. After the computation is finished and the result is read into Maple, thislist
of denominators can be obtained viaPolZeroSets. See aso Example 4 below.

Using the option "C++" of LnvolutiveOptions, the command SyzygyModuleis replaced by SyzygyModuleFast for the current Maple
session.

Bl Examples:
> w th(lnvolutive):
Example 1:
>var = [x,y];

var =[x Y]
> L1 1= [xM2, x*y-x, y"2];

L1:= [ xy-x Y]
> SyzygyModul eFast (L1, var);

[[-y+1,% 0], [0, 7, xy— ], [, 0, X°1]
Janet basis of syzygy module w.r.t. "position over term" ordering:
> SyzygyModul eFast (L1, var, 2);

[0, y?, ~xy+x], [1, xy+X —x°]]
Example 2: A sample calculation for modules over the polynomial ring Q[x,y]:

>var = [x,y];



I var := [x y]

r>L2 :=[[x*2,0], [0,y], [x"2,y]];

L2:=[[x*, 0L, [0, y], X y]]

[ > SyzygyModul eFast (L2, var);
[[1! 11'1]]

Example 3: Syzygies of agenerating set of residue classes of afactor module

[> var = [X,vy];
var =[x ]

r>R:=[[x"3,0], [0,x"3]];
R:=[[x’, 0], [0,X*]]
r>1L3 :=[[x"2,0], [0,y], [x"2,y]];
L3:= [, 0], [0, Y1, X, Y]
r > S := SyzygyMdul eFast (L3, var, "nmod"=R);

S:=[[1,1,-1],[0,% 1, [0,0,%°]]
Pol | nvReduceFast ([x, 0,0], S, var);

[ —
\

[0,0,0]

Example 4: Keeping track of denominators

[> var = [x,y];
var =[x Y]

r> L4 1= [x"2+3*x*y, y-3*x, y"2];

L L4:=[x®+3xy,y—- 3% ¥*]

r > SyzygyModul eFast (L4, var, "denoni=true);

%, x+ &3)/ %)%[0, Y2, 3x—yl, [¥% 0,2 + 3xy]%

[ > Pol ZeroSet s();
(93]

r > SyzygyModul eFast (L4, var, "N', "denom=true);

L [[9,3x+ 10y, -10], [0, Y%, 3x—-V], [¥? 0,5% + 3xy]]

[ > Pol Zer oSets();

L [l

Bl See Also:
7Syzyg¥MgduLeEoLRe$IMLonEoLResolutLonDLmEolEuﬁChat




I nvolutive] SyzygyM oduleGINV] - Python/C++ version of SyzygyModule

Calling Sequence:
SyzygyModuleGINV (L ,var,ord,mode,opt,rel)

Parameters:
L - list (or matrix) of generators of the submodule
var - list of variables (of the polynomial ring)
ord - (optional) change of polynomial ordering (see below)
mode - (optional) string specifying options for the computation
opt - (optional) sequence of equations specifying options for the computation
rel - (optional) equation "mod" = list of generators of a submodule
B Description:

* SyzygyModuleGI NV computes the minimal Janet basis of the syzygy module of the generating setL of a submodule of the free
module of tuples of polynomiasinvar with respect to a certain ordering by using the Python/C++ version of the command

InvolutiveBasis (cf. InvolutiveBasisGINV).

¢ All parameters for SyzygyModule are valid for SyzygyM oduleGI NV with the same meaning as in SyzygyMadule Additionally,
possible left hand sides for equationsinopt are "char", "algext", "transext”, "Name", "quiet" with the same meaning asin
. .

« The advantage of thiscommand is clearly the enormous speed up. (Note, you cannot interrupt this command from within Maple; you
have to kill the corresponding process "python" instead.)

« Theright hand side of an equation "denom"=binnode is expected to be either true or false. The default value isfalse. If b equals true,
then the Python/C++ program collects all coefficients by which it divides during the computation of the involutive basis (these arise
either as contents of polynomials treated by the algorithm or as leading coefficientsin the result before normalizing) together with the
coefficients that occur in some denominator of theinput L. After the computation is finished and the result is read into Maple, thislist
of denominators can be obtained viaPolZeroSets. See also Example 4 below.

¢ Using the option "GINV" of InvolutiveOptions, the command SyzygyModuleis replaced by SyzygyModuleGINV for the current Maple
session.

¢ For more information about ginv, cf. http://invo.jinr.ru and http://wwwhb.math.rwth-aachen.de/Janet.

Bl Examples:
C>wth(lnvolutive):
{ Example 1:
[> var = [x,y];
var =[x y]
r>1L1 :=[x"2, x*y-x, y"2];
- L1:= [, xy=x ]

r > SyzygyModul eG@ NV(L1, var);
L [[~y+1,% 0], [0, - xy=, [¥?, 0,5°]]

L Janet basis of syzygy module w.r.t. "position over term™ ordering:
r > SyzygyModul ed NV(L1, var, 2);

L [0, y?, =xy+x], [1, xy+x %]

Example 2: A sample calculation for modules over the polynomial ring Q[X,y]:

[>var =[x, v];
var =[x Y]

(> L2 :=[[x"2,0], [O,y], [x*2,y]];



]

[

L2:=[[x, 0], [0,y], D¢ ¥i]
> SyzygyModul eG NV(L2, var);
[[11 1v _1]]

Example 3: Syzygies of a generating set of residue classes of afactor module

>var = [X,v];
var =[x y]

>R:= [[x*3,0], [0,x"3]];
R:= [, 0], [0, %]
> L3 :=[[x"2,0], [0,y], [x"2,y]1;

L3:= D¢, 0], [0,y], X, V]

> S := SyzygyModul ed NV(L3, var, "nod"=R);
S:=[[1 1,-1], [0, % =], [0, 0,5°]]
> Pol | nvReduced NV([x, 0,0], S, var);
[0,0,0]
Example 4: Keeping track of denominators
>var = [X,v];
var :=[x ]

> L4 = [1/5*x"2+3*x*y, y-3*Xx, y"2];

L4:= %xz+3xyy—3xy2%
> SyzygyModul ed NV(L4, var, "denonf=true);
[[45, 3x+ 46y, -46], [0, Y2, 3x— Y], [-5Y% 0,2 + 15 xy]]
> Pol Zer oSet s();
[5 9]



