Lehr- und Forschungsgebiet Algebra


Alice Niemeyer © Copyright: © Copyright Peter Winandy +49-171-4892738


+49 241 80 92554




Research interests in the working group Niemeyer are:

Computer Algebra:

Algorithms for matrix groups, permutation groups and p-groups. Analysis of algorithms, proportion of elements in groups.


Block design

Simplicial Surfaces

Combinatorial and group theoretic approaches, euklidean geometry.


Supervised Theses


Ph.D. Theses (Current)

  • Anna Sucker: Development and implementation of highly efficient methods to facilitate computations in finite groups of Lie type
  • Reymond Akpanya: Konstruktion und Faltungen
    simplizialer Flächen
  • Daniel Rademacher: A new algorithm to recognise black box classical groups constructively
  • Tom Görtzen: Konstruktion und Anwendung simplizialer Flächen mit geometrischen Randbedingungen
  • Friedrich Rober: Constructive Recognition Algorithms for Finite Wreath Products

Ph.D. Theses (Completed)

  • Marvin Krings: On the Structure of Primitive Permutation Groups, 2022
  • Dominik Bernhardt: Constructive Aspects of Wreath Products and Quasiprimitive Permutation Groups, 2022
  • Jesse Lansdown: Designs in Finite Geometry (Cotutelle mit der UWA - Prof. John Bamberg und Prof. Gordon Royle), 2020
  • Sergio Siccha: Normalizers of Primitive Goups, 2020
  • Markus Baumeister: Regularity Aspects for Combinatorial Simplicial Surfaces, 2020

Master Theses (Current)


    Master Theses (Completed)

    • Meike Weiß: Einbettung kubischer Graphen in simpliziale Flächen, 2023
    • Lucas Wollenhaupt: Computing the Representations of Classical Groups on the Alternating Aquare, 2022
    • Anna Sucker: Computing the Representations of Classical Groups on the Symmetric Square, 2021
    • Reymond Oluwaseun Akpanya: Klassifikation der Sphären ohne Zweier-Taillen, 2021
    • Friedrich Rober: Constructive Recognition of Wreath Products with simple sockle factor An ,2020  
    • Daniel Rademacher: Bruhat Decomposition in Orthogonal Groups over Finite Fields, 2020
    • Sebastian Krammer: Recognition Algorithms for Wreath Products, 2019
    • Andrea Thevis: Invariant Differential Forms in Arbitrary Characteristic, 2017
    • Marvin Krings: Sylow Subgroups of Primitive Permutation Groups, 2017

    Bachelor Theses (Current)


      Bachelor Theses (Completed)

      • Annika Gageik: Perfekte Matchings vom Face Graph simplizialer Flächen, 2022
      • Carina Wings: Permutation Groups and vertex transitive graphs, 2022
      • Meike Weiss: Simpliziale Flächen und ihre Flächengraphen, 2021
      • Varvara Arkhipova: Classification of special simplicial surfaces with four boundary edges and applications, 2021
      • Johannes Verbücheln: Distance Invariances of Polygonal Complexes, 2019
      • Emma Ahrens: Presentations on Standard Generators for some Classical Groups, 2019
      • Duy Duc Khuat: Constructive Matrix Group Recognition of PSL(2,q), 2019
      • Astrid Hagemeyer: Wreath Products and the Category of Permutation Groups, 2019
      • Alena Meyer: Funktorkategorien und universelle Faktorisierungen von Funktoren, 2019
      • Daniel Rademacher: Bruhat Decomposition in Unitary and Sympletic Groups over Finite Fields, 2019
      • Lucas Wollenhaupt: Partition Backtrack and the Conjugacy Problem in Permutation Groups, 2019
      • Anna Sucker: Constructing Quasi-Primitive almost Simple Groups, 2019
      • Marius Fleuster: A New Algorithm to Compute Arbitrary Reduced Table of Marks of Permutation Groups, 2018
      • Reymond Oluwaseun Akpanya: Manipulation diskreter simplizialer Flächen, 2018
      • Friedrich Rober: Finding Normal Subgroups of Small Index of a Nitely Presented Group, 2018
      • Sebastian Krammer: Isomorphism-Classes of Subgraphs via Semigroups, 2017