Chair of Algebra and Representation Theory

Contact

Fourier © Copyright: Peter Winandy

Phone

work
+49 241 80 94528

Email

E-Mail
 

Research

The research of the Lehrstuhl is located at the intersection of algebraic geometry, combinatorics, and representation theory:

  • Representation theory of semi-simple (complex) Lie algebras, GL_n and other algebraic groups
  • Combinatorics of (monomial) bases and Standard Monomial theory
  • Computeralgebra and Gröbner bases
  • Degenerations of Lie algebras and homogeneous spaces, quiver grassmannians
  • Tropical geometry x Representation theory = ?
  • Polyhedral geometry x Representation theory = ?
  • Weyl modules, Kirillov-Reshetikhin modules of loop algebras

The methods in use may originate from combinatorics and discrete mathematics, heavy use of mathematical software as well as geometric arguments.

Most research is done and will be done together with collaborators from institutes all over the world.

The research has been presented to the mathematics students on 25.06.2019. You can find the presentation online

Die Forschung der Arbeitsgruppe wurde am Tag der Mathematik, 25.06.2019, den Studierenden der Fachgruppe vorgestellt. Die Präsentation ist hier abrufbar

https://prezi.com/view/7xbFm92RXjrRTm174yDn/

 

Supervised Theses

 
 

Ph.D. Theses (Current)

  • Kunda Kambaso: Linear Degenerate Schubert Varieties
  • George Balla: Combinatorics of PBW Tableaux
  • Giulia Iezzi: Algebraic Properties of Quiver Grassmannians
  • Yuhuai Zhou: Theta tensor norms and low rank recovery
  • Felix Röhrich: Representation theory of Lie algebras and beyond
 

Ph.D. Theses (Completed)

  • Verity Mackscheidt: PBW Deformations Arising from Algebraic Groups, 2022
  • Daniel Kalmbach: Essential Bases and Finitely Generated Semi Groups, 2022
 

Master Theses (Current)

  • Maria Magdalena Reitzenstein: The Blended Learning Concept "Flipped Classroom" in a Mathematics Teaching Context
  • Ibrahim Ahmad: The Hibi-Li-Conjecture for Almost Complete Comparability Graphs
 

Master Theses (Completed)

  • Alena Meyer: The Free Abelian Category on One Generator, 2022
  • Astrid Hagemeyer: (Co)limits and Finitely Presented Functors, 2021
  • Michael do Nascimento Vaz: Development and evaluation of learning untis on the topics of bascis of maths and analytical geometry for a math course for refugees and international students, 2020
  • Darius Dramburg: Flat Degenerations of Quiver Grassmannians, 2020
  • Tom Görtzen: Improvements on the Schur Positivity Conjecture, 2020
  • Dario Mathiä: Bumping for PBW Tableaux, 2019
  • Frederik Gutsche: Hochschild Cohomology, PBW Deformations and Hecke Algebras, 2019
 

Bachelor Theses (Current)

  • Tabea Lüker: Creation, realization and evaluation of a course unit regarding the topic of curve sketching as part of the mathematics preparatory course of RWTH Aachen University for refugees and international students
  • Leon Steinhoff: The vanishing ideal of the toric FFLV-variety
 

Bachelor Theses (Completed)

  • Leon Steinhoff: The vanishing ideal of the toric FFLV-variety
  • León van Eß: Gröbner bases of simple, integrable sl_n-modules, 2022
  • Dilay Boyacı: Reflexive Polytopes in Representation Theory via Ehrhart Theory, 2022
  • Julian Hompesch: Galoisgruppen über Q und Berechnung in Spezialfällen, 2022
  • Michael Schlößer: Totale Positivität von Grassmann-Varietäten und Clusteralgebren, 2021
  • Lukas Schnelle: The Gelfand-Tsetlin Bases, Now and Then, 2021
  • Jan Rodriguez: Linear Degeneration of Type E Quiver, 2021
  • Ibrahim Ahmad: Marked Poset Polytopes of Almost Complete Comparability Graphs, 2021
  • Wilkosz, Leon: On Representations of Posets, 2021
  • Lena Porschen: Topologische Galoistheorie, 2021
  • Maria Magdalena Reitzenstein: Die Erstellung und Erprobung stochastischer Lernmaterialien im DaZ-Kontext des  Mathematik-Vorkurses für Geflüchtete und international Studierende der RWTH Aachen, 2020
  • David Schlang: Isomorphismenklassen von Köcherdarstellungen: Typ A, 2020
  • Marius Wesle: Darstellungen von halbeinfachen Lie-Algebren und algebraischen Gruppen: Eine Äquivalenz von Kategorien, 2019